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Wavelet analysis is a new method called ‘numerical microscope’ in signal and image processing. It has
the desirable advantages of multi-resolution properties and various basis functions, which fulfill an
enormous potential for solving partial differential equations (PDEs). The numerical analysis with wavelet
received its first attention in 1992, since then researchers have shown growing interest in it. Various
methods including wavelet weighted residual method (WWRM), wavelet finite element method
(WFEM), wavelet boundary method (WBM), wavelet meshless method (WMM) and wavelet-optimized
finite difference method (WOFD), etc. have acquired an important role in recent years. This paper aims to
make a comprehensive review and classification on wavelet-based numerical analysis and to note their
merits, drawbacks, and future directions. And thus the present review helps readers identify research
starting points in wavelet-based numerical analysis and guides researchers and practitioners.
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1. Introduction

In numerical analysis, classical discretization methods, such as
finite differences, finite elements, spectral elements, are powerful
tools for solving PDEs. However, singularities and steep changes
often emerge in many phenomena, like stress concentration,
elastoplasticity, shock wave and crack. Since small-scale features
only exist in a small percentage of the solution domain, if one
chooses a uniform numerical grid fine enough to resolve the
small-scale characteristics, then the solution to the equations will
be over-resolved in the majority of the domain. One would like,
ideally, to have a dense grid where small-scale structure exists and
a sparse grid where the solution is only composed of large-scale
features [1]. It demands for the usage of non-uniform grids or
moving elements to dynamically adapt to the changes in the
solution. That is where wavelets play a role.

Wavelet is called “numerical microscrope” in signal and image
processing. It has been 31 years since Morlet proposed the concept
of wavelet analysis to automatically reach the best trade-off
between time and frequency resolution [2]. Later, this proposition
was considered as a generalization of ideas promoted by Haar
(1910), Gabor (1946) [3], and Zweig (1976) [4]. Wavelet was in the
air in the numerical analysis community in the early 1990s [5].
Generally, wavelet is used to describe a function that features
compact support, i.e. it is nonzero only on a finite interval. The
representation of a set of time-dependent data on a wavelet basis
leads to a unique structure of information that is localized
simultaneously in the frequency and time domains. This does
not occur in a Fourier representation, where specific frequencies
cannot be associated with a particular time interval, since the basis
functions have constant resolution on the entire domain.
A wavelet basis representation originates a set of wavelet coeffi-
cients structured over different levels of resolution. Each coeffi-
cient is associated with a resolution level and a point in the time
domain. The coefficients involved in the lowest-resolution level
describe the low-frequency features of the data spanning over
broad time intervals. At the highest level, the coefficients are
associated with highly localized high-frequency features [6]. These
desirable advantages draw sight of researchers to apply wavelets
in the resolution of PDEs [7-13]. In the case of a moving steep
front, using the wavelet transformation one can track its position
and increase the local resolution of the grid by adding higher
resolution wavelets in that region. On the other hand, the resolu-
tion level in the smoother regions can be appropriately decreased,
avoiding an unnecessarily dense grid.

In 1991, Beylkin firstly carried out the study of numerical
calculation based on wavelet. The study was presented in the
form of conference paper [14], military AD report [15] and official
journals [16,17]. Daubechies wavelet was used in the calculation
process. Subsequently, Jaffard proved the superiority of solving
elliptic partial differential equations by use of wavelet [18,19].
Zweig found that the generalized wave equation, on which the
continuous wavelet transform is based, can be used to understand
phenomena related to the hearing process [20]. Dahmen and Chen
initiated related studies [21,22]. These early research literatures

had a great effect and motivated the applications of wavelet in
numerical calculation. Hereafter, a lot of research institutions and
universities began to conduct the study of wavelet. These papers
showed that wavelet multi-resolution and wavelet properties,
including compact support, vanishing moment and norm equiva-
lence, were superior and universal in equation solution.

Bertoluzza et al. studied error estimation and convergence of
wavelet collocation methods and wavelet numerical algorithms
[23-26]. Cohen and Kaber et al. studied wavelet finite volume
methods and wavelet multiscale algorithms [27,28]. Berrone and
Dmmel et al. studied wavelet-Galerkin method in any solving
domain [29]. Radha, Williams and Amaratunga applied wavelet
finite element to the study of microscale molecular structure
[30,31]. Chen and Micchelli studied Galerkin methods of discrete
wavelet [32]. Sweldens and Piessens et al. performed a series of
wavelet application studies in numerical analysis [33]. In addition,
Chen, Li and He et al. have successively done studies on wavelet
based error estimator and adaptive schemes [34-37].

During the past two decades, the theories of wavelet numerical
methods have been developed in a variety of directions. In
summary, from the aspect of algorithm construction, the main
wavelet-based numerical analysis methods are categorized as
follows:

Wavelet weighted residual method (WWRM));
Wavelet finite element method (WFEM);
Wavelet boundary element (WBE);

Wavelet meshless method (WMM)

Other wavelet-based numerical methods

Among the above-mentioned methods, weighted residual
method is the earliest numerical method in computational
mechanics, so it is necessary to illustrate in an independent class
although it has many common ground with other methods. Based
on the Galerkin method, the famous weighted residual method,
finite element method (FEM) is proposed. FEM is more universal
compared with other methods. Many successful software such as
ANSYS, NASTRAN are constructed on the basis of FEM. However,
the accuracy of FEM is not the best in certain fields. To improve the
accuracy and efficiency of FEM, the boundary element method
(BEM) is proposed. Furthermore, meshing is an important and
tough task in FEM or BEM for some complex shapes. To ease this
problem, the meshless method is introduced. In the classical
numerical methods, in order to approximate unknown functions,
it is key and necessary to construct the so-called shape functions,
which are complicated, time consuming and even hard to realize
in some special conditions. In addition, the complexity of shape
functions will result in the increase of computational cost in the
total solution process. It is desirable to find a new method which is
simple and reasonable to construct shape functions. However, it
seems to be a complicated task. So we should resort to some other
mathematics tools. Combined with wavelet, the classical methods
show a new appearance in performance. They act as the basic
foundation and theoretical background of classification.
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