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a b s t r a c t

The development of a finite element model for time-dependent analysis of bonded prestressed concrete
girders at service conditions is presented. The effects of creep and shrinkage of concrete and relaxation of
steel tendons are taken into account. The concrete creep is modeled based on the Dirichlet series creep
compliance with efficiency in simulating the stress history. In addition, the interaction between different
time-dependent effects is fully considered in the numerical procedure. The numerical method is
formulated based on the layered Euler–Bernoulli beam theory. In the constructed incremental
equilibrium equations, the equivalent nodal load increments consist of four components contributed
by external loads, concrete creep, concrete shrinkage and tendon relaxation, while the stiffness matrix is
composed of the material and geometric stiffness matrices. Numerical examples show that the proposed
model can well predict the long-term behavior of prestressed concrete beams, and that the time-
dependent effects have important influence on the structural behavior.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

For a prestressed concrete structure under sustained loads, the
section stress and strain are subject to change with time due to time-
dependent effects resulting from creep and shrinkage of concrete and
relaxation of prestressing tendons [1]. If the structure is statically
indeterminate, the time-dependent effects will also result in redis-
tribution of moments in addition to the stress redistribution in cross
sections [2]. The inevitable loss of the long-term workability and
performance of prestressed concrete structures at service conditions
is a primary concern for researchers and engineers.

The theoretical simulation of long-term behavior of prestressed
concrete structures is not an easy task. One of the challenges is to
model accurately and efficiently the creep effect, since creep of
concrete is associated with the history of the applied stress.
A number of methods have been developed to simulate the creep
behavior of concrete members [3,4]. Utilization of the effective
modulus is known to be the simplest method for a creep analysis [5].
This method may produce satisfactory results when the aging effects
are negligible, but it will lead to an overestimation of the creep when
the aging effects are present. Most of the available models were
based on the age-adjusted effective modulus method (AEMM) by
introducing an aging coefficient in the effective modulus [6–8].
The values of the aging coefficient are often taken from tables or

charts and, therefore, AEMM is a simplified method rather than
a refined method. Another challenge is to model accurately the
relaxation of prestressing tendons, taking into account the interac-
tion between different time-dependent effects. Commonly, this
interaction is considered approximately by using a relaxation reduc-
tion coefficient obtained from tables or charts [1,9]. Although several
refined numerical methods have recently been developed to model
the concrete creep and/or tendon relaxation [10,11], few of these
methods have been applied to continuous concrete members.

This paper presents a rigorous numerical method for time-
dependent analysis of bonded prestressed concrete girders at
service loads, taking into account concrete creep, concrete shrink-
age and steel tendon relaxation. The finite element method is
formulated based on the layered Euler–Bernoulli beam theory
combined with rational models for concrete creep and tendon
relaxation. The proposed method of analysis can be applied to the
prediction of long-term behavior of both simply support and
continuous girders. Several numerical examples are given to
illustrate the reliability and applicability of the proposed model.

2. Material models

2.1. Instantaneous constitutive laws

Since this study concerns the time-dependent analysis of pre-
stressed concrete girders at service loads, the following simplifications
of the instantaneous constitutive laws of materials may be made.
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The concrete in compression at service conditions is assumed
to be within the elastic range. The concrete in tension is assumed
to be linear elastic prior to cracking, followed by linear tension
stiffening behavior, as indicated by

sc ¼ Ecεc f or εcrεcr ð1aÞ

sc ¼ f t 1� εc�εcr
εtu�εcr

� �
f or εcroεcrεtu ð1bÞ

where ft is the concrete tensile strength; Ec is the modulus of
elasticity of concrete; εcr ¼ f t=Ec; and εtu is the ultimate concrete
tensile strain. When the concrete strain is greater than εtu, the
tensile stress is equal to zero. Both the reinforcing and prestressing
steel may be considered to be linear elastic at service conditions.

2.2. Concrete creep model

At service conditions, creep can be considered to be propor-
tional to the applied stress. Therefore, the creep strain εcrc ðtÞ under
sustained stress is given by

εcrc ðtÞ ¼ scðτÞCðt; τÞ ð2Þ

where scðτÞ is the concrete stress at age τ; and Cðt; τÞ is the creep
compliance, defined as the creep strain at age t caused by a unit
stress applied at age τ.

When the applied stress is subject to a gradual change with
time, which is generally true in practical applications, the creep
strain due to the applied stress is calculated by applying the
principle of superposition as follows:

εcrc ðtÞ ¼ scðt0ÞCðt; t0Þþ
Z t

t0
Cðt; τÞ∂scðτÞ

∂τ
dτ ð3Þ

where t0 is the age at which the initial stress is applied. This
equation indicates that creep is associated with the history of the
applied stress.

The time is divided into a number of small intervals to apply an
incremental method. Generally, the stresses for each element at
various time have to be stored for integrating Eq. (3). However,
this may have some limitations in application to large structures.
To overcome this problem, the following Dirichlet series creep
compliance, initially proposed by Zienkiewicz and Watson [12], is
adopted in the present study:

Cðt; τÞ ¼ ∑
m

k ¼ 1
ϕkðτÞ½1�e� rkðt� τÞ� ð4Þ

where m, ϕkðτÞ and rk are the empirical parameters to be
determined by experimental data.

By utilizing the above creep compliance, the creep strain
increment at time interval Δtn (¼ tn�tn�1), Δεcrc , is given by [13]

Δεcrc ¼ εcrc ðtnÞ�εcrc ðtn�1Þ ¼ ∑
m

k ¼ 1
ð1�e� rkΔtn ÞωknþCðtn; tn�1=2ÞΔsn

ð5Þ

in which tn�1/2 represents the middle time between time tn�1 and
time tn; Δsn is the stress increment at time interval Δtn; ωkn is
obtained from the following recursive formula:

ωkn ¼ωkðn�1Þe
� rkΔtn� 1 þΔsn�1ϕkðtðn�1Þ�1=2Þe� rkΔtn� 1=2 ð6aÞ

ωk1 ¼ scðt0Þϕkðt0Þ ð6bÞ

From Eqs. (5) and (6), it can be seen that, instead of recording the
entire stress history, only the value of ωkðn�1Þ needs to be stored,
thus ensuring an efficient creep analysis.

2.3. Concrete shrinkage model

Shrinkage of concrete is defined as the volume change which is
independent of the imposed stress. Therefore, the shrinkage strain
can be conveniently calculated using the available shrinkage
models proposed by the codes or by the investigators. According
to Mode Code 2010 [14], the shrinkage strain is calculated from

εshc ðtÞ ¼ εcasðtÞþεcdsðt�tsÞ ð7Þ
in which εcasðtÞ and εcdsðt�tsÞ are the autogenous shrinkage and
the drying shrinkage, respectively. They are expressed as follows:

εcasðtÞ ¼ εcas0βasðtÞ ð8aÞ

εcdsðt�tsÞ ¼ εcds0βRHβdsðt�tsÞ ð8bÞ

εcas0 ¼ �αas
f cm=10

6þ f cm=10

� �2:5

� 10�6 ð9aÞ

βasðtÞ ¼ 1�e�0:2
ffiffi
t

p
ð9bÞ

εcds0 ¼ ½ð220þ110αds1Þe�αds2 f cm � � 10�6 ð9cÞ

βdsðt�tsÞ ¼ t�ts
0:035h2þðt�tsÞ

 !0:5

ð9dÞ

where αds1 and αds2 are the coefficients depending on the type of
cement; fcm is the mean concrete compressive strength at the age
of 28 days; βRH is the coefficient depending on the relative
humidity of the ambient atmosphere; h is the notional size of
member; (t–ts) is the duration of drying.

The shrinkage strain increment, Δεshc , at time interval Δtn is
given by

Δεshc ¼ εshc ðtnÞ�εshc ðtn�1Þ
¼ εcas0½βasðtnÞ�βasðtn�1Þ�þεcds0βRH ½βdsðtn�tsÞ�βdsðtn�1�tsÞ�

ð10Þ

2.4. Relaxation model for steel tendons

In this study, the relaxation of prestressing steel, spr , is
evaluated utilizing the equation proposed by Magura et al. [15]:

spr
sp0

¼ � log ðτ�t0Þ
10

sp0
f py

�0:55

 !
ð11Þ

in which (τ–t0) is the time in hours after stressing; sp0 is the initial
stress immediately after stressing; and f py is the yield stress of
prestressing steel. The ratio of the yield stress to the ultimate
tensile strength generally varies between 0.8 and 0.9, depending
on the type of the prestressing steel.

It should be noted that the above relaxation equation is subject
to the condition that the tendon length is kept constant and sp0 is
the only applied stress. In prestressed concrete members, however,
the applied stress would be influenced by some causes such as the
prestress transfer, the load application, and the interaction
between the creep and shrinkage of concrete and the relaxation
of steel tendons. Therefore, the initial stress for computing the
stress relaxation at each time interval should be appropriately
adjusted according to the change of the tendon stress as a result of
these causes. The procedure for computing the actual relaxation of
prestressing steel is illustrated in Fig. 1. Denote by sp0ð1Þ the initial
prestress at time t0. At time t1, the prestress varies from sp0ð1Þ to
sp1 due to the tendon relaxation Δspr1 and also to other causes.
Compute the fictitious initial prestress sp0ð2Þ using Eq. (11) such
that sp0ð2Þ would be relaxed to sp1 from time t0 to time t1. Based on
the fictitious initial prestress sp0ð2Þ, the tendon relaxation Δspr2
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