Accepted Manuscript

Fabrication of magnetic Fe $_3$ O $_4$ @nSiO $_2$ @mSiO $_2$ -NH $_2$ core-shell mesoporous nanocomposite and its application for highly efficient ultrasound assisted dispersive μ SPE-spectrofluorimetric detection of ofloxacin in urine and plasma samples

Roya Mirzajani, Nahid pourreza, Jafar Burromand-piroz

PII: S1350-4177(17)30291-2

DOI: http://dx.doi.org/10.1016/j.ultsonch.2017.06.027

Reference: ULTSON 3750

To appear in: *Ultrasonics Sonochemistry*

Received Date: 8 April 2017 Revised Date: 27 June 2017 Accepted Date: 28 June 2017

Please cite this article as: R. Mirzajani, N. pourreza, J. Burromand-piroz, Fabrication of magnetic $Fe_3O_4@nSiO_2@mSiO_2-NH_2$ core-shell mesoporous nanocomposite and its application for highly efficient ultrasound assisted dispersive μSPE -spectrofluorimetric detection of ofloxacin in urine and plasma samples, *Ultrasonics Sonochemistry* (2017), doi: http://dx.doi.org/10.1016/j.ultsonch.2017.06.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fabrication of magnetic Fe₃O₄@nSiO₂@mSiO₂—NH₂ core—shell mesoporous nanocomposite and its application for highly efficient ultrasound assisted dispersive µSPE-spectrofluorimetric detection of ofloxacin in urine and plasma samples

Roya Mirzajani*, Nahid pourreza, Jafar Burromand-piroz

Chemistry Department, College of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

In this research, a sensitive, simple and rapid ultrasound assisted dispersive micro solidphase extraction (USAD-µSPE) was developed using a synthesized core—shell magnetic mesoporous nanocomposite (Fe₃O₄@nSiO₂@mSiO₂-NH₂) as an efficient adsorbent for the preconcentration and spectrofluorometric determination of ofloxacin (OFL) in biological samples. The synthesized adsorbent were characterized using FT-IR spectroscopy, transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), energy dispersive X-ray (EDX) spectroscopy, thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) analysis. The application of this magnetic nanocomposite as a sensitive solid phase for removal, preconcentration and spectrofluorometric quantification of trace amount of OFL was developed. Influence of various variables including pH, sorbent dosage, desorption solvent properties and sonication time on present method response was studied and optimized. The results showed that using the proposed method OFL can be determined in the linear concentration range of 1.0-500.0 µg L⁻¹ with a limit of detection as low as 0.21 µg L⁻¹ and relative standard deviation less than 2.5 (%). The results of human urine and blood plasma analysis showed that the method is a good adsorbent for biological sample analysis purposes.

Keywords: Ofloxacin, magnetic nanoparticles, ultrasound assisted, preconcentration, fluorescence detection

Corresponding author: E-mail address: rmirzajani@scu.ac.ir (R. Mirzajani) Tel. / Fax +986113738044.

Download English Version:

https://daneshyari.com/en/article/5144433

Download Persian Version:

https://daneshyari.com/article/5144433

<u>Daneshyari.com</u>