Accepted Manuscript

Sonochemical assisted synthesis MnO_2/RGO nanohybrid as effective electrode material for supercapacitor

Shahram Ghasemi, Sayed Reza Hosseini, Omid Boore-talari

PII:	S1350-4177(17)30367-X
DOI:	http://dx.doi.org/10.1016/j.ultsonch.2017.08.013
Reference:	ULTSON 3818
To appear in:	Ultrasonics Sonochemistry
Received Date:	13 May 2017
Revised Date:	14 August 2017
Accepted Date:	14 August 2017

Please cite this article as: S. Ghasemi, S.R. Hosseini, O. Boore-talari, Sonochemical assisted synthesis MnO₂/RGO nanohybrid as effective electrode material for supercapacitor, *Ultrasonics Sonochemistry* (2017), doi: http://dx.doi.org/10.1016/j.ultsonch.2017.08.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Sonochemical assisted synthesis MnO₂ /RGO nanohybrid as effective electrode material for supercapacitor

Shahram Ghasemi^{*}, Sayed Reza Hosseini, Omid Boore-talari

Faculty of chemistry, University of Mazandaran, Babolsar, Iran

Abstract

Manganese dioxide (MnO₂) needle-like nanostructures are successfully synthesized by a sonochemical method from an aqueous solution of potassium bromate and manganese sulfate. Also, hybride of MnO₂ nanoparticles wrapped with graphene oxide (GO) nanosheets are fabricated through an electrostatic coprecipitation procedure. With adjusting pH at 3.5, positive and negative charges are created on MnO_2 and on GO, respectively which can electrostatically attract to each other and coprecipitate. Then, MnO₂/GO pasted on stainless steel mesh is electrochemically reduced by applying -1.1 V to obtain MnO₂/RGO nanohybrid. The structure and morphology of the MnO₂ and MnO₂/RGO nanohybrid are examined by Raman spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), field emissionscanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDX), and thermal gravimetric analysis (TGA). The capacitive behaviors of MnO₂ and MnO₂/RGO active materials on stainless steel meshes are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge test and electrochemical impedance spectroscopy (EIS) by a three-electrode experimental setup in an aqueous solution of 0.5 M sodium sulfate in the potential window of 0.0-1.0 V. The electrochemical investigations reveal that MnO₂/RGO exhibits high specific

^{*} Corresponding author: Tel: +981135302397 Fax: +98 113 5302350. E-mail address: <u>sghasemimir@yahoo.com</u>, <u>sghasemi@umz.ac.ir</u> (S. Ghasemi)

Download English Version:

https://daneshyari.com/en/article/5144493

Download Persian Version:

https://daneshyari.com/article/5144493

Daneshyari.com