Accepted Manuscript Ultrasound-enhanced Nanosized Zero-valent Copper Activation of Hydrogen Peroxide for the Degradation of Norfloxacin Xiaoyan Ma, Yongqing Cheng, Yongjian Ge, Huadan Wu, Qingsong Li, Naiyun Gao, Jing Deng PII: S1350-4177(17)30379-6 DOI: http://dx.doi.org/10.1016/j.ultsonch.2017.08.025 Reference: ULTSON 3830 To appear in: *Ultrasonics Sonochemistry* Received Date: 16 May 2017 Revised Date: 20 July 2017 Accepted Date: 23 August 2017 Please cite this article as: X. Ma, Y. Cheng, Y. Ge, H. Wu, Q. Li, N. Gao, J. Deng, Ultrasound-enhanced Nanosized Zero-valent Copper Activation of Hydrogen Peroxide for the Degradation of Norfloxacin, *Ultrasonics Sonochemistry* (2017), doi: http://dx.doi.org/10.1016/j.ultsonch.2017.08.025 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. **ACCEPTED MANUSCRIPT** Ultrasound-enhanced Nanosized Zero-valent Copper Activation of Hydrogen Peroxide for the Degradation of Norfloxacin Xiaoyan Ma¹, Yongqing Cheng¹, Yongjian Ge¹, Huadan Wu¹, Qingsong Li², Naiyun Gao³, Jing Deng I^{*} (1. College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China; 2. College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China; 3. State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China) Abstract: Commercial nanosized zero-valent copper (nZVC) was used as hydrogen peroxide (H₂O₂) activator in conjunction with ultrasonic irradiation (US) for the oxidative degradation of norfloxacin (NOR) in this study. Compared with silent degradation system, a significantly enhanced NOR removal was obtained in sono-advanced Fenton process, which involved a synergistic effect between sonolysis and Fenton-like reaction. Almost complete removal of NOR was achieved at 30 min when the operating conditions were 0.25 g/L nZVC and 10 mM H₂O₂ with ultrasound power of 240 W at 20 kHz. The released Cu⁺ during the nZVC dissolution was the predominant copper species to activate H₂O₂ and yield hydroxyl radicals (·OH) in US/nZVC/H₂O₂ system. According to the radical quenching experiments and electron paramagnetic resonance technique, hydroxyl radicals in solution (·OH_{free}) were verified as the primary reactive species, and superoxide anion radicals $(\cdot O_2)$ were regarded as the mediator for the copper cycling by reduction of Cu2+ to Cu+. NOR removal efficiencies were improved in various degrees when increased nZVC dosage, ultrasound power, hydrogen-ion amount and H₂O₂ concentration. Moreover, the inhibitory effect of different inorganic salts on NOR degradation followed the sequence of $Na_2SO_4 > NaNO_3 \approx$ no salt $> NaCl > NaHCO_3$. Finally, eleven intermediates were identified and five oxidation pathways were proposed, the cleavage of piperazine ring and transformation of quinolone group seemed to be the major pathway. Keywords: Ultrasound; Nanosized Zero-valent Copper (nZVC); Hydrogen Peroxide; Norfloxacin; *Corresponding author at: College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China. Tel./fax: +86 57187952015 E-mail address: zjut_djing@163.com (J. Deng) 1 ## Download English Version: ## https://daneshyari.com/en/article/5144503 Download Persian Version: https://daneshyari.com/article/5144503 <u>Daneshyari.com</u>