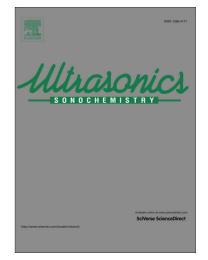
Accepted Manuscript


Accepted Date:

Surface modification of TiO₂ particles with the sono-assisted exfoliation method

Eakkasit Thasirisap, Naratip Vittayakorn, Panpailin Seeharaj

2 June 2017

PII:	\$1350-4177(17)30266-3
DOI:	http://dx.doi.org/10.1016/j.ultsonch.2017.06.002
Reference:	ULTSON 3725
To appear in:	Ultrasonics Sonochemistry
Received Date:	7 April 2017
Revised Date:	2 June 2017

Please cite this article as: E. Thasirisap, N. Vittayakorn, P. Seeharaj, Surface modification of TiO₂ particles with the sono-assisted exfoliation method, *Ultrasonics Sonochemistry* (2017), doi: http://dx.doi.org/10.1016/j.ultsonch. 2017.06.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Surface modification of TiO₂ particles with the sono-assisted exfoliation method

Eakkasit Thasirisap, Naratip Vittayakorn, Panpailin Seeharaj*

Advanced Materials Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, 1 Chalong krung Rd., Ladkrabang, Bangkok, 10520, Thailand

> Corresponding author: e-mail address: panpailin.se@kmitl.ac.th Tel.: +66 8496-9664

Keywords: Titanium dioxide, Sonochemistry, Sono-assisted exfoliation, Surface modification, Photocatalytic property

Abstract

This study reported a novel approach to optimize the photocatalytic property of anatase TiO_2 particles by delaminating their outer surface into highly reactive nanosheets via the sono-assisted exfoliation method. To modify the surface, TiO_2 particles were dispersed in aqueous solution of 10 M sodium hydroxide (NaOH) and tetrabutylammonium hydroxide (TBAOH), followed by irradiation with high intensity ultrasonic wave (20 kHz, 150 W/cm²) for 60 min. The intercalation and exfoliation processes were accelerated with the driving force of the extreme acoustic cavitation leading to the delamination of TiO_2 nanosheets with highly reactive exposed {001} facets from the mother TiO_2 crystals. The presence of TBAOH increased yield of nanosheets formation and stabilized the nanosheet structure. The unique morphology of the surface modified TiO_2 particles provided benefits in increasing the specific surface area and lowering the optical band gap energy (E_g) and electron-hole recombination rate resulting in an enhancement of methylene blue dye degradation efficiency. The surface modification of TiO_2 particles by the sono-assisted exfoliation method can optimize the photocatalytic activity by yielding synergetic effects of the high surface reactive sites of the nanosheets and the high degree of crystallinity of the bulk structure.

Download English Version:

https://daneshyari.com/en/article/5144600

Download Persian Version:

https://daneshyari.com/article/5144600

Daneshyari.com