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a b s t r a c t

The subharmonic emission of sound coming from the nonlinear response of a bubble population is the
most used indicator for stable cavitation. When driven at twice their resonance frequency, bubbles can
exhibit subharmonic spherical oscillations if the acoustic pressure amplitude exceeds a threshold value.
Although various theoretical derivations exist for the subharmonic emission by free or coated bubbles,
they all rest on the single bubble model. In this paper, we propose an analytical expression of the subhar-
monic threshold for interacting bubbles in a homogeneous, monodisperse cloud. This theory predicts a
shift of the subharmonic resonance frequency and a decrease of the corresponding pressure threshold
due to the interactions. For a given sonication frequency, these results show that an optimal value of
the interaction strength (i.e. the number density of bubbles) can be found for which the subharmonic
threshold is minimum, which is consistent with recently published experiments conducted on ultra-
sound contrast agents.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Cavitation bubbles, whether generated by ship propellers, ultra-
sound or used in sonochemistry and material surface cleaning, dis-
integrate at bubble collapse because a shape instability develops
[1]. However, under certain conditions, disintegration need not
occur, and one can achieve controlled and stable cavitation with
weakly or strongly oscillating bubbles, with applications in diverse
medical and engineering fields. In medical and therapeutic applica-
tions, bubbles can act as vectors for directed drug delivery and
gene transfection within living cells [2]. Even if bubble collapses
were thought to be the key element of cell permeabilization, recent
works demonstrate the possibility of transfecting cells by gentle
oscillating bubbles, possibly resulting in lower tissue damage, with
numerous applications such as the permeabilization of central ner-
vous system capillaries [3,4], or sonothrombolysis enhancement
[5]. For engineering applications such as material cleaning, soft
or gentle bubble dynamics recently appear as an additional
mechanism of surface cleaning, without involving well-known ero-
sive bubble collapse [6,7]. Amongst the potential underlying mech-
anisms of cleaning, the possibility of steadily fatiguing the surface
contamination by the oscillatory component of the bubble-induced

liquid flow has been demonstrated, requiring control of the fast
boundary flows induced by bubbles oscillation near surfaces [8].

A commonly used indicator for the stable cavitation regime is
the subharmonic component emitted by the bubble population
[9,10]. Indeed the subharmonic component is the first nonlinear
frequency component that arises uniquely from the bubble oscilla-
tions in opposite to harmonics possibly induced by nonlinear
propagation. The diverse mechanisms underlying subharmonic
generation have been theoretically and experimentally investi-
gated, and can be classified as: (i) the large bubble theory for which
the bubble population contains bubbles around twice the resonant
diameter [11]; (ii) for larger amplitudes, volumetric oscillations of
near-resonant sizes bubbles can bifurcate with period-doubling
oscillations as bubble behavior becomes more chaotic [1]. (iii)
the occurence of shape modes through parametric instability could
also provide subharmonic component but with weak radiative effi-
ciency [12] and (iv) insights of subharmonic generation through
the periodic collapse of an acoustically-driven bubble cloud have
been proposed [13]. Amongst these mechanisms, driving bubbles
at twice their resonance frequency if the one requiring both
moderate acoustic amplitudes and avoidance of bubble collapses.
In this case subharmonic component arises above a pressure
threshold whose theoretical predictions for subharmonic existence
have been extensively studied [14–17] for free or coated bubbles.
Particularly, this subharmonic threshold possesses a minimum
value at twice the resonance frequency for free bubbles, and when
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using coated bubbles a significant decrease and low-frequency
shifting of this threshold are achieved depending on the microbub-
ble shell properties [15]. However, it is worth noting that all these
works considered only subharmonic emission from single bubble,
or the collective result of simultaneous but independent contribu-
tions of a bubble distribution [16].

When it comes to considering bubble cloud dynamics, even lin-
ear oscillation of bubble clouds significantly differs from the phy-
sics of single bubbles, as internal spatial resonant modes occurs
[18]. Particularly the first (spatial) cloud mode involves in-phase
oscillations of the bubbles within the cloud, and thus bubble cloud
dynamic is no more adequately described by the summed indepen-
dent response of individual bubbles as significant bubble interac-
tions occur. Therefore by assuming the bubbles to oscillate in
phase and remaining spherical, several authors proposed a modifi-
cation of the well-known Rayleigh-Plesset equation accounting for
the bubble–bubble interaction [19–21]. Further works then
extended this result to the case of N interacting bubbles to investi-
gate bubble clusters dynamics [22–24]. Most of these works were
devoted to the understanding of transient/collapsing activities of
bubble clouds for sonochemistry applications, and almost none
focused on stable cavitation activity of bubbles clouds. It can how-
ever be expected that for low bubble concentration, the generated
subharmonic signal comes from the summed contribution of each
individual bubble [16], while at higher concentration strong bub-
bles interactions would affect overall dynamics and therefore the
stable cavitation emission, possibly explaining recent experimental
observation of an optimal microbubble concentration for the pro-
motion of stable cavitation dose [25]. Thus, to get first insight in
the stable cavitation activity of a dense bubble cloud, as encoun-
tered in therapeutical or sonochemical applications, we propose
in this study an extension of the derivation of the subharmonic
threshold to the ideal case of a homogeneous and monodisperse
bubble cloud.

2. Theory

2.1. Amplitude of the subharmonic response

We consider a homogeneous, monodisperse cloud of N bubbles
in a liquid of density q and viscosity l, where all the bubbles pul-
sate in phase, so that the dynamics of each bubble can be described
by the modified Rayleigh-Plesset equation in its simplest form
[22]:
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where R is the time-varying radius of one bubble around its static
radius R0, the dot denotes time derivative, p1 is the static pressure
in the liquid, p0 ¼ p1 þ 2r=R0 is the static pressure inside the bub-
ble, pa is the acoustic pressure of amplitude Pa and angular fre-
quency X;paðtÞ ¼ Pa cosðXtÞ;r is the surface tension, c is the gas
polytropic index, and S is the coupling strength between the bubble
and all the surrounding ones, defined as function of the distances di

between bubbles:
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1
di
: ð2Þ

Unlike the theoretical works mentioned above, we are not inter-
ested in the violent dynamics in strong acoustic fields but in the
weakly nonlinear oscillations of bubbles, thus the effect of liquid

compressibility is discarded in Eq. (1). Also note that the
hypothesis of in-phase bubble oscillations rests on the liquid
incompressibility assumption. Including the effect of liquid com-
pressibility in a more realistic description of the bubble cloud
dynamics would also imply to account for the finite value of the
speed of sound, and time delay effects should be introduced in
Eq. (1) as the radiated acoustic wave takes time to travel along
the distance di [26,27].

In the weakly nonlinear oscillations framework, approximate
solutions of Eq. (1) can be found using an asymptotic approach
[14]. We briefly recall the principle of such perturbation method,
resulting in the analytical expression of the subharmonic oscilla-
tions. First, it is convenient to introduce new spatial and temporal
coordinates:
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and to transform Eq. (1) using a power series expansion in x by
assuming small radial displacements around the static radius R0

(x � 1). The proper derivation of the threshold of subharmonic
oscillations requires to retain terms up to the cubic order in the
power series expansion. Neglecting terms of fourth order or higher,
this leads to the following equation for x:
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where the different parameters are given in Appendix A. In this set
of parameters, x and x0 are the (dimensionless) driving frequency
and bubble eigen frequency, respectively, f is the effective driving
pressure, b is the viscous damping constant, and s ¼ SR0=ð1þ SR0Þ
is the coupling parameter which captures the effect of bubble-
bubble interactions. When the latter is set to zero, one recovers
the single bubble case [14].

The form of Eq. (5) shows the shift of the linear resonance fre-
quency x ¼ x0

ffiffiffiffiffiffiffiffiffiffiffi
1� s

p
due to bubble interactions, in agreement

with Ref. [28]. Note that because s has values ranging from 0
(S ¼ 0, no interactions) to 1 (S ! 1), the linear resonance fre-
quency of the bubble cloud is necessarily lower than the single
bubble resonance frequency. Following the Bogolyubov-Krylov
perturbation method, an approximate solution of Eq. (5) to
the first order is obtained in the first subharmonic region
(x ’ 2x0
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where a and / denote the amplitude and phase of the subhar-
monic component, and the coefficients K and qi’s are given in
Appendix A. A set of differential equations for the unknowns a
and / is obtained by cancelling the secular terms up the cubic
order in Eq. (5). In the steady-state regime, three solutions exist
for the amplitude a (together with the corresponding solutions
for /), either aðxÞ ¼ 0, or
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with
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