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a b s t r a c t

This paper presents an advanced analysis method for three-dimensional semi-rigid steel frames
accounting for three main nonlinear sources. The second-order effects are considered by the use of
stability functions obtained from the solution of beam–columns under axial force and bending moments
at two ends. The spread of plasticity over the cross section and along the member length is captured by
monitoring the uniaxial stress–strain relation of each fiber on selected sections. The nonlinear semi-rigid
beam-to-column connection is simulated by a 3D multi-spring element. The generalized displacement
control method is applied to solve the nonlinear equilibrium equations in an incremental-iterative
scheme. The nonlinear load–displacement responses and ultimate load results compare well with those
of previous studies. It is concluded that using only one element per member with monitoring the end
sections accurately likely predict the nonlinear responses of three-dimensional semi-rigid steel frames.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

There are two common finite element approaches for advanced
analysis of three-dimensional (3D) steel framed structures: the
plastic zone methods (spread-of-plasticity) [1–5] and the plastic
hinge methods (concentrated plasticity) [6–13]. The former meth-
ods based on geometric stiffness matrices requires member to be
discretized into several elements to accurately predict the second-
order effects and inelastic behavior of steel structures. It is
generally recognized to be computationally expensive (computer
resources, computational time) because numerous discretizations
of elements are used in analysis modeling. Clarke [1], and Teh [5]
presented finite element formulations using Hermitian cubic
polynomial functions for plastic-zone analysis of 3D framed
structures. Foley and Vinnakota [3,4] developed a nonlinear finite
element program for second-order spread-of-yielding analysis
of 2D multi-storey semi-rigid steel frames under static loading.
In order to save computer resources and analysis time, Foley [2]
proposed a parallel processing and vectorization for advanced
analysis of multi-storey steel frames on a multi-core computer.
Structures are divided into some sub-structures for reducing the
unknown of nonlinear equilibrium equations. The plastic hinge
methods [6,8–12,14,15] based on stability functions obtained from

the closed-form solution of the beam–columns under end forces
can capture the second-order effects using only one or two
elements per member. The inelastic behavior of material is usually
considered by the lumped hinges at the two ends of the members.
The effects of spread of plasticity and residual stress are consid-
ered by using the reduced tangent modulus approach [6,8–10,14].
This method is called the “practical advanced analysis method”
because it can consider all key factors, influencing the ultimate
strength of the steel framed structures in an effective way, and is
then suitable for adoption in office design [6–11,13–15]. However,
the plastic hinge analysis is limited due to its incapability of
capturing the more complex member behaviors that involve
torsional–flexural buckling, local buckling, and severe yielding
under the combined action of compression and bi-axial bending,
which may significantly reduce the load-carrying capacity of
the structure [16]. Furthermore, the hinge methods have shown
to over-estimate the limit strength when structural behavior is
dominated by the instability of a few members [14]. Also, it may
inadequately give information as to what is happening inside the
member because the member is assumed to remain fully elastic
between its ends.

In recent years, Ziemian and McGuire [13] proposed a modified
tangent modulus approach for the second-order inelastic hinge
method that can produce the accuracy of more sophisticated
plastic zone methods in analyzing the in-plane behavior of
compact doubly symmetric sections. Researchers recommended
that further systematic research be undertaken for the purpose
of establishing the terms, constants, and limits of applicability for
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additional groupings of sections, imperfections, and residual
stresses. Ngo-Huu and Kim [12] improved the common plastic
hinge method to become the fiber-hinge method for considering
the initial residual stress directly. However, the length of fiber
hinges was not adequately investigated and it also cannot capture
the effects of distributed plasticity along the member, so it is
difficult to apply it towards practical designs. Chiorean [17]
proposed a beam–column method for nonlinear inelastic analysis
of 3D semi-rigid steel frames. The nonlinear inelastic force–strain
relationship and stability functions are used in representing the
inelastic behavior and second-order effects, respectively. The
advantage of this study is that it is able to trace the spread of
plasticity along the member length by using only one beam–

column element per framed member in analysis modeling.
However, it seems that the shape parameters a and n of the
Ramberg–Osgood model and α and p of the proposed modified
Albermani model for the force–strain relationship of the cross-
section, which considerably affect the inelastic behavior of the
steel frames, are not consistently used. Recently, Thai and Kim [18]
presented a fiber beam–column element which considers both
geometric and material nonlinearities. The material nonlinearities
are included by tracing the uniaxial stress–strain relationship of
each fiber on the cross sections. However, updating of the
elemental tangent stiffness matrix based on the tangent modulus
of each fiber calculated from the ratio of the incremental fiber
stress and incremental fiber strain is not rational for the elastic-
perfectly plastic material model of steel. This is not rational
because with the elastic-perfectly plastic material, the tangent
modulus of steel fibers are only equal to the initial Young's
modulus, or zero as yielded fibers. To overcome the limitations
of the above mentioned studies, this study will develop a fiber
beam–column element for advanced analysis of 3D steel frames
with nonlinear semi-rigid connections.

A different important nonlinear source in advanced analysis
of steel frames is beam-to-column connections. In reality, beam-
to-column connections are not fully rigid or ideally pinned joints,
they play a role in transfering a part of the forces from some
elements to other ones, and the rest is absorbed by connections.
The real behavior of connections is nonlinear and usually presented
by the moment–rotation relationship of rotational springs with zero-
lengths. In the above-mentioned studies, the connections are usually
modeled as rotational springs attached at the member ends, then,
the elemental tangent stiffness matrix will be modified for consider-
ing the effects of connection flexibility [3,4,8,9,17,19].

In this paper, a fiber beam–column method is developed for the
second-order inelastic analysis of 3D semi-rigid steel frames. The
spread of plasticity over the cross section and along the member
length is captured by tracing the uniaxial stress–strain relations of
each fiber on the cross sections located at the selected integration
points along the member length. The Gauss–Lobatto integration
rule is adopted herein for numerically evaluating the elemental
stiffness matrix instead of the classical Gauss integration rule
because it always includes the end sections of the integration field.
Stability functions obtained from the closed-form solution of a
beam–column subjected to end forces are used to accurately
capture the small P-delta effect. A new force interpolation function
matrix is developed to consider the effects of moment magnifica-
tion due to axial force and lateral displacements. Warping torsion
and lateral-torsional buckling are not considered in this study.
An independent two-node zero-length connection element with
six translational and rotational springs is developed for nonlinear
beam-to-column joints and various connections. This is efficient
because modification of the beam–column stiffness matrix con-
sidering the semi-rigid connections is unnecessary and the con-
nection is ready to integrate with any element types (e.g. truss
joints, bridge joints, etc.). The Kishi–Chen three-parameter power

model [20] and the Chen–Lui exponential model [21] are applied
for representing the moment–rotation relationship and predicting
the instantaneous stiffness of connections. The generalized dis-
placement control (GDC) method proposed by Yang and Shieh [22]
is employed for solving nonlinear equilibrium equations. Several
numerical examples are presented to verify the accuracy, effi-
ciency, and applicability of the proposed proceduce in predicting
the second-order inelastic response of 3D steel frames with semi-
rigid connections.

2. Formulation

2.1. Nonlinear beam–column element

2.1.1. Small P-delta and shear deformation effects
To capture the effect of axial force acting through the lateral

displacement of the beam–column element (small P-delta effect),
the stability functions reported by Chen and Lui [23] are used to
minimize modeling and solution time. Generally only one element
per member is needed to accurately capture the small P-delta
effect. From Kim and Choi [9], the incremental force–displacement
equation of 3D beam–column element that accounts for transverse
shear deformation effects can be expressed as
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where ΔP, ΔMyA, ΔMyB, ΔMzA, ΔMzB, and ΔT are the incremental
axial force, end moments with respect to y and z axes, and torsion
respectively; Δδ, ΔθyA, ΔθyB, ΔθzA, ΔθzB, and Δϕ are the incremental
axial displacement, joint rotations, and angle of twist; C1y, C2y, C1z,
and C2z are bending stiffness coefficients accounting for the
transverse shear deformation effects, and are defined as

C1y ¼
k21y�k22yþk1yAszGL

2k1yþ2k2yþAszGL
ð2aÞ

C2y ¼
�k21yþk22yþk2yAszGL

2k1yþ2k2yþAszGL
ð2bÞ

C1z ¼
k21z�k22zþk1zAsyGL
2k1zþ2k2zþAsyGL

ð2cÞ

C2z ¼
�k21zþk22zþk2yAsyGL
2k1zþ2k2zþAsyGL

ð2dÞ

where k1n¼S1n(EIn/L) and k2n¼S2n(EIn/L); S1n and S2n are stability
functions with respect to n axis (n¼y, z), and are expressed as

S1n ¼
knL sin ðknLÞ� ðknLÞ2 cos ðknLÞ
2�2 cos ðknLÞ�knL sin ðknLÞ if Po0

ðknLÞ2 cosh ðknLÞ�knL sinh ðknLÞ
2�2 cosh ðknLÞþknL sinh ðknLÞ if P40

8><
>: ð3aÞ

S2n ¼
ðknLÞ2 �knL sin ðknLÞ

2�2 cos ðknLÞ�knL sin ðknLÞ if Po0

knL sin ðknLÞ� ðknLÞ2
2�2 coshðknLÞþknL sinhðknLÞ if P40

8><
>: ð3bÞ

where k2n ¼ jPj=EIn. EA, EIn, and GJ denote the axial, bending
and torsional stiffness of the beam–column element, and are
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