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a b s t r a c t

The fixed grid finite element method is introduced to approximate the effective moduli of particulate
composite. The difficulty of domain discretization induced by the inclusions is avoided in the fixed
grid finite element method, as the discretization is independent of the inclusions. The elastic properties
of every finite element are approximated by a weighted function, and the volume fractions of the
constituents in the element are taken as the weights. A simple scheme is proposed to approximate the
volume fractions in every element. The validities of the fixed grid finite element method are verified, by
comparing the effective moduli obtained from the fixed grid finite element method with those obtained
from finite element method. The anisotropy of particulate composite is discussed with the fixed grid
finite element, and the applicability of the fixed grid finite element method for composite with multiple
irregular inclusions is illustrated.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Particulate composite like the polymer matrix composite, metal
matrix composite, and ceramic composite has vast application.
Particulate composite is reinforced with regular or irregular particle
inclusions, which have different phases from the matrix. Two-phase
composite can be categorized into three kinds in terms of the
inclusion-to-matrix modulus ratio [1]: (1) composites with high
inclusion-to-matrix modulus ratio larger than 20; (2) composites
with low inclusion-to-matrix modulus ratio ranging from 1 to 5; and
(3) composite with inclusion-to-matrix modulus ratio smaller than
1.0. Particulate composite has the advantage of blending the proper-
ties of individual materials [2]. However, the determination of the
effective moduli of particulate composite is a challenging issue as the
coexistence of multiple phases in it. Great efforts have been made in
the past few decades to predict the effective moduli of particulate
composite with a variety of analytical and numerical methods.

Based on the pioneering work by Eshelby [3] on the elastic
stress field of a composite with a single inclusion when it is
subjected to far-field stresses, some analytical solutions are pro-
posed to calculate the effective moduli of particulate composite.
The analytical methods single out themselves by considering the
interaction between the inclusions with their unique ways, while

the dilute solution is an exception as it ignores the interaction
between the inclusions [4]. In the self-consistent method (SC)
[5,6], the interaction between the inclusions is considered by
assuming that inclusions are inserted into the equivalent medium
rather than the matrix. In the direct derivative method (IDD) [7] and
the Mori–Tanaka method (MT) [8,9], the original far-field traction
applied on the surface of the composite is replaced with a new one to
consider the interaction between the inclusions. The differential
method [10] assumes that inclusion is gradually inserted into the
mediumwith known equivalent elastic modulus. The generalized self-
consistent method (GSC) [11] assumes that the inclusion and the
matrix are bounded by the infinite equivalent medium to consider the
interactions between the inclusions. There are some disadvantages for
the analytical methods. Generally, these analytical methods require
the explicit solution of eigen strain [3] for inclusions, which can be
achieved only for some regular inclusions. In addition, most of the
analytical methods have limited ability to study the anisotropy of
particulate composite.

The finite element method [12-23], as well as the boundary
element method [24-27], is an important alternative tool to
calculate the effective moduli of particulate composite. The chal-
lenging problem for finite element method is mesh generation,
especially when the representative volume element (RVE) is 3D
and the inclusions in it are irregular and multi-shaped. This is due
to the requirement of fitted mesh, which means that the interface
between the phases in the RVE should be perfectly represented by
the boundaries of the elements. A variety of measures have been
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tried to deal with the problem. These measures include the
application of digital image technique where each pixel and voxel
represents a 2-D and 3-D finite element, respectively [12,19,28],
unified application of state-of-art software packages [16,21], and
the combination of extended finite element techniques with level
set method [15,20]. However, mesh generation for particulate
composite with arbitrary inclusion shapes is still not an easy task
[15], as the requirement of the fitted mesh is too strict. Recently,
an iterative finite element method [29] is proposed to approximate
the effective moduli of particulate composite. Although the
method avoids the difficulty of domain discretization, it is only
applicable to the case with the inclusion-to-matrix modulus ratio
lower than 2.

The fundamental character of particulate composite is that it is
multi-phased. In recent years, the technique of fixed grid finite
element method (FGFEM) [30] has been successfully applied to
tackle multi-phased problems. The applications include fluid–
structure interaction [31], phase transformation [32], heat con-
duction [33], and unconfined seepage [34,35]. Garcia extends the
method into elasticity problems [36], followed by the application
for shape optimization [37], and the dynamic analysis of structures
with holes [38,39].

In this paper, a numerical scheme based on FGFEM is intro-
duced to approximate the effective moduli of particulate compo-
site. The difficulty of domain discretization is avoided in FGFEM,
as RVE is discretized with finite elements independently and the
inclusions are not involved in the discretization. Unlike the
iterative finite element method [29], this method can be applied
to composite with much high inclusion-to-matrix modulus ratio.
The rest of this paper is organized as follows. In Section 2, the
theoretical basis to calculate the effective moduli of particulate
composite is introduced for self-completeness. In Section 3, the
concept of FGFEM, as well as the proposed numerical scheme, is
introduced. The verification and some application of FGFEM along
with some discussion are supplied in Section 4. Some conclusions
are made in Section 5.

2. Theoretical basis

Set the RVE of a particulate composite as shown in Fig. 1
applied with a traction r0 Un on its surface, of which n is the unit
outward normal on the surface. With the assumption of no bound
slip on the constituent interface in the RVE, the strain energy of
the RVE is

U ¼ 1
2
s0ijCijmns

0
mnV ð1Þ

of which U is the strain energy, s0ij is a component of r0, Cijmn is a
component of the effective compliance stiffness tensor of the RVE,
and V is the volume of the RVE. The summation convention is used
for repeated indices in this section.

Alternatively, we have

U ¼ 1
2

Z
V
sijεijdv ð2Þ

where sij is a component of the stress tensor in the RVE, and εij is a
component of the strain. Due to the symmetry of εij and sij, Eq. (2)
is recast into

U ¼ 1
2

Z
V
ðsijuiÞ;jdv�

1
2

Z
V
sij;juidv ð3Þ

where ui is a displacement component.
According to the equilibrium condition, i.e., sij;j ¼ 0, and the

divergence theorem, Eq. (3) is simplified into

U ¼ 1
2

Z
s
sijnjuids ð4Þ

where s is the surface area of RVE. Obviously, sijnj equals s0ijnj on
the RVE surface. Therefore, Eq. (4) is rewritten into

U ¼ 1
2
s0ij

Z
s
njuids ð5Þ

Based on the divergence theorem, Eq. (5) is rewritten into

U ¼ 1
2
s0ij

Z
V
εijdV ¼ 1

2
s0ijεijV ð6Þ

where εij is the average strain in RVE.
It is seen in Eqs. (1) and (6) that the essence of determining

Cijmn is to determine the relationship between εij and s0mn. By
setting εij ¼ C

0
ijmns0mn, we have

Cijmn ¼ ðC′
ijmnþC′

mnijÞ=2 ð7Þ

Therefore, the effective compliance moduli of the composite can
be determined based on the relationship between the applied
traction and the average strain in the composite. Similarly, a
displacement field can be applied on the RVE surface to determine
the effective stiffness moduli of the composite.

3. Fixed grid finite element method (FGFEM)

In FGFEM, the analysis domain of interest is enclosed by a
smallest bounding box as shown in Fig. 2. Unlike the traditional
finite element method that discretizes the analysis domain reg-
ularly or irregularly for fitted mesh, FGFEM discretizes the bound-
ing box with regular finite elements resulting in non-fitted mesh.
Therefore, the elements in the bounding box as shown in Fig. 2 are
classified into three types [36]: (a) the inside elements which are
completely enclosed by the physical domain; (b) the outside
elements which completely lay out of the physical domain, and
(c) the boundary elements which cover the boundary of the
physical domain.

For a particulate composite, its RVE coincides with the bound-
ing box, and it also has three type of elements: (a) the inclusion
elements which have a single inclusion phase; (b) the matrix
elements which only have matrix phase; and (c) the hybrid
elements which have at least two phases.

Fig. 1. RVE with a traction. Fig. 2. Element types in FGFEM.
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