Accepted Manuscript

Adaptation of microbial community of the anode biofilm in microbial fuel cells to temperature

Xiaoxue Mei, Defeng Xing, Yang Yang, Qian Liu, Huihui Zhou, Changhong Guo, Nanqi Ren

PII: S1567-5394(16)30212-2

DOI: doi: 10.1016/j.bioelechem.2017.04.005

Reference: BIOJEC 7005

To appear in: Bioelectrochemistry

Received date: 26 November 2016

Revised date: 27 April 2017 Accepted date: 27 April 2017

Please cite this article as: Xiaoxue Mei, Defeng Xing, Yang Yang, Qian Liu, Huihui Zhou, Changhong Guo, Nanqi Ren, Adaptation of microbial community of the anode biofilm in microbial fuel cells to temperature, *Bioelectrochemistry* (2017), doi: 10.1016/j.bioelechem.2017.04.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Resubmitted to: *Bioelectrochemistry* (*BIOELECHEM_2016_75*)

Date: April 27, 2017

Adaptation of microbial community of the anode biofilm in microbial

fuel cells to temperature

Xiaoxue Mei^a, Defeng Xing^a, *, Yang Yang^a, Qian Liu^a, Huihui Zhou^a, Changhong

Guo^b, Nanqi Ren^a

^a State Key Laboratory of Urban Water Resource and Environment, School of

Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin

150090, China

^b College of Life Science and Technology, Harbin Normal University, Harbin 150025,

China

Corresponding author. School of Municipal and Environmental Engineering, P.O.

Box 2650, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province

150090, China

E-mail address: dxing@hit.edu.cn; Tel: +0086-45186289195

Abstract:

Temperature as an important ecological factor affects biofilm development and

microbial metabolic activity. Here, the performances and microbial communities of

microbial fuel cells (MFCs) at different temperature were analyzed. As the

temperature decreased, the power output of MFCs declined. A maximum power

density of 894.3±48.6 mW/m² was obtained in MFCs operating at 30°C, which was

18.5% and 64.5% higher than that in MFCs at 20 °C and 10 °C, respectively. Illumina

Download English Version:

https://daneshyari.com/en/article/5145009

Download Persian Version:

https://daneshyari.com/article/5145009

Daneshyari.com