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a b s t r a c t

A continuum finite element model for the nanoscale plates considering the surface effect of the material
is developed. Governing equations for Kirchoff and Mindlin nanoplates are derived by using the Galerkin
finite element technique. The model is verified by comparing the results with available analytical
solutions. The results indicate that, depending on the boundary conditions, the deflections and
frequencies of the plate have a dramatic dependence on the residual surface stress and surface elasticity
of the plates. The present model is an efficient tool for the analysis of the static and dynamic mechanical
behaviors of nanoscale plates with complex geometry, boundary and loading conditions and material
properties.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nanoscale plates are key components of actuators and sensors
for nano-electromechanical system (NEMS) [1]. Naturally, it is
importance to understand the static and dynamic mechanical
behaviors of these advanced materials and structures for the
design and manufacture of NEMS. Due to their high surface-to-
volume ratio, structures at nanoscale show significant size-
dependent behavior [2–4]. Therefore, the surface effect must be
considered for the analysis of materials and structures at nanos-
cale. Some researchers applied atomistic simulation to study the
size-dependent properties of nanostructures [5–7]. However, this
method is difficult to apply to the analysis of NEMS with complex
geometries, due to the limit of the available computational power.
It is essential to find an efficient tool to analyze the mechanics
behavior of nanoscale structures. Gurtin and Murdoch [8,9]
proposed a modified continuum theory which incorporates the
surface/interface effects into the traditional continuum mechanics.
This theory has been widely used to study the mechanics response
of nanoscale structures. For examples, Lim and He [10] proposed a
continuum model to analyze the bending behaviors of thin elastic
nanoplate of nanoscale thickness. Lu et al. [11] proposed a size-
dependent thin plate model by complementing Lim and He's
model. Liu and Rajapakse [12] studied the static and dynamic
response of nanoscale beams based on the Gurtin–Murdoch
theory. Assadi et al. [13] studied the size-dependent dynamic

response of nanoplates by using the Gurtin–Murdoch theory.
Wang and Feng [14,15] studied the influence of the surface
effect on the buckling and vibration behaviors of nanowires. Fang
et al. [16] studied the influence of the surface/interface effect
on the dynamic stress of two interacting cylindrical nano-
inhomogeneities under compressive waves based on the surface/
interface elasticity theory.

Analytical solutions are impossible for the structures with
complex geometry and boundary conditions. It is necessary to
develop a versatile numerical model, such as, the finite element
(FE) method and the boundary element (BE) method. Wei et al.
[17] proposed a kind of surface element for a two dimensional
continuum FE model to take into account the surface elastic effect
(based on the Gurtin–Murdoch theory). Tian and Rajapkse [18]
studied the mechanics of nanoscale inhomogeneities in an elastic
matrix by proposed a FE model. Feng et al. [19] developed a 3D FE
model to study the resonant properties of silicon nanowires. Liu
et al. [20] proposed a Galerkin-type finite element of the thin and
thick beam with the surface effect. In addition, Dong and Pan [21]
proposed a BE method to analyze the stress field in nano-
inhomogeneities with the surface/interface effect.

Nanoplates with complex geometry, boundary and loading
conditions are often used in NEMS. Such complicated structural
systems cannot be studied by analytical models. However, an
efficient numerical model is not available at this moment for the
analysis of nanoscale plates. In the present paper, a finite element
model is developed to analyze the bending behavior of nanoplates
with consideration of surface residual stress and surface elasticity.
The present FE model is based on the plate mathematical model
developed by Lu et al. [11] by using the Gurtin–Murdoch surface
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elasticity theory. The accuracy and convergence of the present
finite element model are verified by comparing the results with
the available analytical solutions. The model is used to investigate
the influence of residual surface stress and surface elasticity on
bending and free vibration of nanoplates with different boundary
conditions.

2. Finite element formulation

The static equilibrium equations for the bulk of the plate
without considering body force are sij;j ¼ 0, where sij denote
stresses of the bulk. According to Ref. [8], the surface stresses
satisfy the following relations:

τ7βi;β−s
7
i3 ¼ 0 ð1Þ

where τ7βi denote the surface stresses on the surface S7 . Using
sij;j ¼ 0 and Eq. (1) we can obtain the equilibrium equations of
plate with the surface effect [11]

Nn

iβ;β þ q¼ I €ui ð2aÞ

Mn

αβ;β−Nα3 ¼ J €uα ð2bÞ

where I¼ R h=2
−h=2 ρ dz, J ¼ R h=2

−h=2 ρz
2 dz, Nn

iβ ¼Niβ þ τþαi þ τ−αi, Mn

αβ ¼
Mαβ þ ðh=2Þðτþβα−τ−βαÞ, and Nij ¼

R h=2
−h=2 sij dz and Mij ¼

R h=2
−h=2 sijz dz.

According to Refs. [4,8], linear constitutive equations for the
surface are

ταβ ¼ τ0αβ þ Cs
αβγδε

s
γδ; τα3 ¼ τ0αu3;α ð3Þ

whereτ0αβ , C
s
αβγδ and εsγδ are the receptivity, the residual surface

stresses, the surface elastic constants and surface strains. Both τ0αβ
and Cs

αβγδ can be obtained from atomistic calculations.

2.1. Static bending of Kirchhoff plate

According to the Kirchhoff plate theory, the displacement
components are uα ¼ −zu3;α and u3 ¼w. Using Eq. (2), we obtained

Mn

x;xx þ 2Mn

xy;xy þMn

y;yy þ 2ðτxxw;xx þ τyyw;yyÞ þ q¼ 0 ð4Þ

where fMn

;xx Mn

;yy Mn

;xy g
T ¼ ½D�ψþ ðh2=2Þ½Cs�ψ, ψ¼ fw;xx w;yy

−2w;xygT , and the material property matrices ½D� and ½Cs� are given
in Appendix A. For static bending of the Kirchhoff plate, applying
Galerkin's weighted residual method to Eq. (4) gives

∬AðMn

x;xx þ 2Mn

xy;xy þMn

y;yy þ 2ðτxxw;xx þ τyyw;yyÞ þ qÞw dA¼ 0 ð5Þ

Using Green's theorem, we get the weak form of Eq. (5) as

∬AðMn

xw;xx þ 2Mn

xyw;xy þMn

yw;yyÞdA
þ 2∬Aðτxxw;xx þ τyyw;yyÞw dAþ ∬Aqw dA

þ
Z
S
ðVn

xnx þ Vn

ynyÞw dS−
Z
S
ðMn

xnx þMn

xynyÞw;x dS−
Z
S
ðMn

xynx

þMn

ynyÞw;y dS¼ 0 ð6Þ

where Vn

x ¼Mn

x;x þMn

xy;y and Vn

x ¼Mn

xy;x þMn

y;y.
The boundary conditions are usually expressed in terms of

directions that are normal and tangent to the boundaries. These
are the derivatives in the normal direction ∂w=∂n and in the
tangential direction ∂w=∂T . Here n is the outward unit vector
normal to the boundary of the plate, whose components are nx

and ny, T is the unit vector tangent to the boundary of the plate,
whose x and y components are −ny and nx. By these definitions,
wn ¼ nxwx þ nywy, wT ¼ −nywx þ nxwy and n2

x þ n2
y ¼ 1. The last

two boundary integrals in Eq. (6) can now be written asZ
S
½ðMn

xnx þMn

xynyÞðnxwn−nywT Þ þ ðMn

xynx þMn

ynyÞðnyw;n þ nxw;T Þ�dS

¼
Z
S
½ðMn

xn
2
x þMn

yn
2
y þ 2Mn

xynxnyÞwn

þð−Mn

xnxny þMn

ynxny þMn

xyðn2
x−n

2
yÞÞwT �dS

¼
Z
S
Mn

nwn dS þ
Z
S
Mn

TwT dS ð7Þ

Finally, the weak form Eq. (6) can be rewritten as

∬AψT½D�ψdAþ h2

2
∬AψT½Cs�ψdA−2∬Aðτxxwxx þ τyywyyÞw dA

−∬Aqw dA−
Z
s
ðVn

n þMn

T ;T Þw dsþ
Z
s
Mn

nwn ds¼ 0 ð8Þ

where

ψ¼ w;xx w;yy 2w;xy

h iT
ð9Þ

Consider a four-node finite element with three nodal degrees of
freedom per node, i.e.,w, θx and θy as shown in Fig. 1(a).

The element nodal displacement vector is

ue ¼ w1 θx1 θy1 ::: w4 θx4 θy4
h iT

ð10Þ

The displacement vector of the element and the vector of
element curvatures are, receptivity, w¼NTue and ψ¼ ½B�Tue. Here
the shape function N and the geometry matrix ½B� are given in
Appendix A. Substituting Eq. (9) and the weighting functions
(w-Ni and ψ-½B�T) into Eq. (8), we obtain

½ke� ¼ ½kb� þ ½ks� þ ½kτ� ð11Þ
where

½kb� ¼∬A½B�T ½D�½B�dA ð12aÞ

ks
� �¼ h2

2
∬A½B�T ½Cs�½B�dA ð12bÞ

Fig. 1. (a) Four-node plate element; (b) eight-node plate element.
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