international journal of hydrogen energy XXX (2017) 1–8

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Hydrogen desorption kinetics of the destabilized LiBH₄-AlH₃ composites

Haizhen Liu ^{a,*}, Li Xu ^a, Peng Sheng ^a, Shuangyu Liu ^a, Guangyao Zhao ^a, Bo Wang ^a, Xinhua Wang ^{b,c,**}, Mi Yan ^{b,c}

^a State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute, State Grid Corporation of China, Beijing 102209, PR China

^b State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, PR China

^c Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China

ARTICLE INFO

Article history: Received 23 October 2016 Received in revised form 29 November 2016 Accepted 10 December 2016 Available online xxx

Keywords: Hydrogen storage materials Lithium borohydride Aluminium hydride Decomposition kinetics Kinetic model

ABSTRACT

LiBH₄ can be destabilized by AlH₃ addition. In this work, the hydrogen desorption kinetics of the destabilized LiBH₄—AlH₃ composites were investigated. Isothermal hydrogen desorption studies show that the LiBH₄ + 0.5AlH₃ composite releases about 11.0 wt% of hydrogen at 450 °C for 6 h and behaves better kinetic properties than either the pure LiBH₄ or the LiBH₄ + 0.5Al composite. The apparent activation energy for the LiBH₄ decomposition in the LiBH₄ + 0.5AlH₃ composite estimated by Kissinger's method is remarkably lowered to 122.0 kJ mol⁻¹ compared with the pure LiBH₄ (169.8 kJ mol⁻¹). Besides, AlH₃ also improves the reversibility of LiBH₄ in the LiBH₄ + 0.5AlH₃ composite. For the LiBH₄ + xAlH₃ (x = 0.5, 1.0, 2.0) composites, the decomposition kinetics of LiBH₄ are enhanced as the AlH₃ content increases. The sample LiBH₄ + 2.0AlH₃ can release 82% of the hydrogen capacity of LiBH₄ in 29 min at 450 °C, while only 67% is obtained for the LiBH₄ + 0.5AlH₃ composite in 110 min. Johnson–Mehl–Avrami (JMA) kinetic studies indicate that the reaction LiBH₄ + Al → 'Li–Al–B' + AlB₂ + H₂ is controlled by the precipitation and subsequently growth of AlB₂ and Li–Al–B compounds with an increasing nucleation rate.

© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

With a high hydrogen density of 18.5 wt%, lithium borohydride (LiBH₄) has draw much attention for on-board hydrogen storage during the last decade [1-14]. However, LiBH₄ is thermodynamically stable and only liberate hydrogen (Eq. (1)) at a temperature higher than 400 °C at 1 bar H₂ [1]. What's more, the recovery of $LiBH_4$ following the reverse reaction of Eq. (1) requires a temperature over 600 °C and a hydrogen pressure higher than 155 bar H₂ [2].

$$2\text{LiBH}_4 \leftrightarrow 2\text{LiH} + 2\text{B} + 3\text{H}_2 (\Delta \text{H} = 67 \text{ kJ mol}^{-1} \text{H}_2)$$
(1)

The metallic aluminium (Al) or Al-containing compounds (e.g., $LiAlH_4$, Li_3AlH_6) have been employed as a destabilization

Please cite this article in press as: Liu H, et al., Hydrogen desorption kinetics of the destabilized LiBH₄-AlH₃ composites, International Journal of Hydrogen Energy (2017), http://dx.doi.org/10.1016/j.ijhydene.2016.12.083

^{*} Corresponding author. State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute, State Grid Corporation of China, Beijing 102209, PR China. Fax: +86 10 66601688.

^{**} Corresponding author. Fax: +86 571 87952716.

E-mail addresses: lhzju@qq.com (H. Liu), xinhwang@zju.edu.cn (X. Wang). http://dx.doi.org/10.1016/j.ijhydene.2016.12.083

^{0360-3199/© 2016} Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

agent to improve the hydrogen desorption/absorption properties of LiBH₄ [15–27]. The Al-containing compounds like LiAlH₄ or Li₃AlH₆ will first undergo decomposition to generate Al, which then reacts with LiBH₄ based on Eq. (2) to form AlB₂, thus destabilize LiBH₄. It was theoretically estimated by Cho et al. that the decomposition temperature of Eq. (2) is only 188 °C at 1 bar H₂, which is significantly lower than that of the pure LiBH₄ (403 °C) [15].

$$2\text{LiBH}_4 + \text{Al} \leftrightarrow 2\text{LiH} + \text{AlB}_2 + 3\text{H}_2 \tag{2}$$

In our previous work, aluminium hydride (AlH₃) was employed as a novel Al source to destabilize LiBH₄ [16]. It was found that AlH₃ is better as an Al source than the metallic Al. This is due to both that AlH₃ is a brittle metal hydride which can be easily refined by ball milling and that AlH₃ can generate oxide-free Al after decomposition. The hydrogen desorption process of the $LiBH_4 + 0.5AlH_3$ composite when heating from room temperature to 500 °C is composed of three steps. The first step is the self-decomposition of AlH₃ forming Al (Eq. (3)) and the second step is the subsequent decomposition of LiBH₄ reacting with Al and forming AlB₂ and Li-Al-B compounds (Eq. (4)). When the reaction Eq. (4) proceed to a certain extent, LiBH₄ will no longer react with Al due to the kinetic barrier of the formed AlB₂ and Li-Al-B layers covering the Al particle surfaces. In this case, the residual LiBH₄ tends to undergo a self-decomposition forming LiH and B and releasing hydrogen, which corresponds to the third decomposition step (Eq. (1)). However, the hydrogen desorption kinetics of the LiBH₄-AlH₃ systems and the detailed reaction mechanism between LiBH₄ and Al are still unclear.

$$AlH_3 \rightarrow Al + H_2$$
 (3)

$$LiBH_4 + Al \rightarrow Li - Al - B' + AlB_2 + H_2$$
(4)

In the present work, in order to gain an insight into the hydrogen desorption kinetics of the LiBH₄–AlH₃ systems and also into the kinetic model of the reaction between LiBH₄ and Al, the hydrogen desorption kinetics of the LiBH₄ + 0.5AlH₃ composite were first studied compared with the LiBH₄ + 0.5Al composites. Then, the hydrogen desorption properties of the LiBH₄ + xAlH₃ (x = 0.5, 1, 2) composites are investigated to demonstrated the effect of AlH₃ addition of various contents on the hydrogen desorption kinetics of LiBH₄. Finally, the kinetic model of the reaction between LiBH₄ and Al is preliminarily revealed and discussed.

Experimental details

LiBH₄ (Acros, 95%) and Al (Sinopharm Group, 99%) were used as received. AlH₃ was synthesized by a wet chemical method summarized by Brower et al. [28]. The detailed synthesis process can be found in other literatures [29–31].

The LiBH₄, LiBH₄ + 0.5Al, LiBH₄ + 0.5AlH₃, and the LiBH₄ + xAlH₃ (x = 0.5, 1, 2) samples were prepared by ball milling using a planetary ball mill (QM-3SP4, Nanjing Nanda Instrument Plant). Experimentally, 1 g samples and 50 g stainless steel balls were sealed in a stainless steel vial with an internal volume of 100-mL in an argon-filled glovebox. The

milling process was carried out at 400 rpm for 30 min. During the milling process, it was paused every 6 min for cooling to prevent temperature rising of local areas resulting from longterm milling.

The hydrogen desorption/absorption measurements were carried out on a Sieverts-type apparatus. For the nonisothermal hydrogen desorption measurements, the samples were heated from room temperature to 500 °C with a heating rate of 4 °C min⁻¹ and then kept at 500 °C for 1 h. For the isothermal hydrogen desorption measurements, the samples were rapidly heated to 450 °C and held at 450 °C. For the hydrogen absorption measurements, the dehydrogenated samples were first heated to 400 °C and hold at this temperature. Then hydrogen of about 5 MPa was filled into the sample chamber. The hydrogen absorption process proceeded for 5 h.

The thermal analysis was carried out on a differential scanning calorimeter (DSC, Netzsch STA449F3). The samples were heated from room temperature to 500 °C with a set heating rate, during which an argon atmosphere was flowed at 50 mL min⁻¹ to prevent oxidation of the samples. The powder X-ray diffraction (XRD) was carried out on a PAN-alytical X-ray diffractometer (X'Pert Pro, Cu K α , 40 kV, 40 mA). During the XRD measurements, the samples were sealed with an amorphous membrane to avoid oxidation. A field emission scanning electronic microscopy (SEM, FEI SIRION 100) was used to study the morphologies of the samples.

Results and discussion

The hydrogen desorption kinetics of the LiBH₄, LiBH₄ + 0.5Al and LiBH₄ + 0.5AlH₃ samples were first studied by isothermal hydrogen desorption measurements. The samples were rapidly heated to 450 °C and kept at 450 °C in a chamber with an initial pressure of vacuum. Fig. 1a shows the isothermal hydrogen desorption curves of the samples at 450 °C plotted as the hydrogen desorption capacity of the sample *versus* desorption duration, while Fig. 1b displays the hydrogen desorption duration.

It can be observed from Fig. 1a that the three samples behave different decomposition process. The decomposition of the pure LiBH₄ shows an acceleration-decelerationacceleration-deceleration process and release hydrogen of 9.8 wt%. The LiBH $_4$ + 0.5Al composite presents a sigmoidtype process and release hydrogen of 7.0 wt%, which is lower than that of the pure LiBH₄. This is because Al in the LiBH₄ + 0.5Al composite do not contain any hydrogen. As for the $LiBH_4$ + 0.5AlH₃ composite, it can be seen that the decomposition proceed through three steps, which is very similar to the non-isothermal decomposition process reported in the previous work [16]. The first step of the isothermal decomposition of $LiBH_4 + 0.5AlH_3$ in Fig. 1a is related to the first self-decomposition of AlH₃ generating Al and releasing hydrogen of 3.5 wt% (Eq. (3)). The second decomposition step is related to the reaction between LiBH₄ and the previously formed Al forming AlB2 and Li-Al-B compounds and releasing hydrogen of 1.4 wt% (Eq. (4)). When the reaction Eq. (4) proceeds to a certain degree, it tends to

Please cite this article in press as: Liu H, et al., Hydrogen desorption kinetics of the destabilized LiBH₄–AlH₃ composites, International Journal of Hydrogen Energy (2017), http://dx.doi.org/10.1016/j.ijhydene.2016.12.083

Download English Version:

https://daneshyari.com/en/article/5145464

Download Persian Version:

https://daneshyari.com/article/5145464

Daneshyari.com