ARTICLE IN PRESS

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (2017) I-6

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Computational study of the vibrational spectroscopy properties of boron-hydrogen compounds: $Mg(B_3H_8)_2$, $CB_9H_{10}^-$ and $CB_{11}H_{12}^-$

Daniel Sethio, Latévi Max Lawson Daku*, Hans Hagemann**

Faculty of Sciences - University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland

ARTICLE INFO

Article history:
Received 13 January 2017
Received in revised form
1 March 2017
Accepted 8 March 2017
Available online xxx

Keywords:
Boron-hydrogen species
IR
Raman
Vibrational frequencies
Anharmonicity
Density functional theory

ABSTRACT

We report the DFT study of the vibrational spectroscopy properties of $Mg(B_3H_8)_2$, a potential intermediate in the decomposition of $Mg(BH_4)_2$, as well as those of $CB_{11}H_{12}^-$ and $CB_9H_{10}^-$, whose salts can exhibit high ionic conductivities. Because the inclusion of anharmonicity is key to the accurate description of the vibrational properties of BH species [D. Sethio, L. M. Lawson Daku, H. Hagemann. Int. J. Hydrogen Energy, 41 (2016) 6814], the calculations were performed both in the harmonic and in the anharmonic approximation. The IR and Raman spectra of $Cs(CB_{11}H_{12})$ and $Na_2(B_{10}H_{10})$ have also been measured. The calculated and experimental spectra are in good agreement. A comparative analysis of the vibrational spectroscopy properties is made for $B_3H_8^-$ and $Mg(B_3H_8)_2$, $B_{12}H_{12}^{2-}$ and $CB_{11}H_{12}^-$, and for $B_{10}H_{10}^{2-}$ and $CB_9H_{10}^-$.

© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Boron-hydrogen compounds are receiving a lot of attention for very various reasons. Thus, $Mg(B_3H_8)_2$ and $MgB_{12}H_{12}$ are potential intermediates in the decomposition of $Mg(BH_4)_2$ [1–8]. On an unrelated note, $Na(CB_{11}H_{12})$, $Na(CB_9H_{10})$ and mixture of both show remarkably high ionic conductivities and stabilities, which make them suitable for use in rechargeable battery application [9–12].

Previous studies have examined the structures, reactivity, the relative stabilities and spectroscopic properties of boronhydrogen species; see, for instance [13–26], and references therein. Vibrational spectroscopy is a powerful method to

characterize the structure and dynamics of molecular systems. For the boron-hydrogen species, the inclusion of anharmonicity proves to be key for the accurate prediction of their IR and Raman spectra [27].

In this work, we calculate the IR and Raman spectra of $Mg(B_3H_8)_2$ and compare them to those of the free $B_3H_8^-$ ion to assess the influence of the complexation to Mg^{2+} . Similarly, we investigate the differences observed between the IR and Raman spectra of $B_nH_n^{2-}$ and $CB_{n-1}H_n^-$ (n=10 and n=12) in order to probe the influence of the symmetry breaking induced by the $B\to C$ chemical substitution in closoborane cages. For all calculations, anharmonic effects are included. We have also measured the IR and Raman spectra of $Cs(CB_{11}H_{12})$ and $Na_2(B_{10}H_{10})$.

E-mail addresses: max.lawson@unige.ch (L.M. Lawson Daku), hans-rudolf.hagemann@unige.ch (H. Hagemann). http://dx.doi.org/10.1016/j.ijhydene.2017.03.044

0360-3199/© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Sethio D, et al., Computational study of the vibrational spectroscopy properties of boron-hydrogen compounds: $Mg(B_2H_8)_2$, $CB_9H_{10}^-$ and $CB_{11}H_{12}^-$, International Journal of Hydrogen Energy (2017), http://dx.doi.org/10.1016/j.ijhydene.2017.03.044

^{*} Corresponding author.

^{**} Corresponding author.

Methods

Computational details

All calculations were performed with the Gaussian09 program package [28], using the procedure reported in Ref. [27] for an accurate prediction of the vibrational species of boronhydrogen species. Thus, the B3LYP functional [29,30] augmented with Grimme's D2 [31] dispersion correction was employed in combination with the large correlation-consistent cc-pVTZ basis. The geometries were optimized using an "ultra-fine" grid and "tight" convergence criteria for the forces and displacements. Vibrational frequencies analyses were then conducted both in the harmonic and in the anharmonic approximation using second-order perturbation theory as implemented in Gaussian09 [32–34].

Experimental details

 $Cs(CB_{11}H_{12})$ was purchased from Katchem and used without any further purification. The FTIR spectrum was measured using a Biorad Excalibur Instrument equipped with a Specac Golden Gate heatable ATR setup at room temperature. The spectral resolution was set to 1 cm⁻¹. Raman spectrum was recorded using 488 nm excitation and a Kaiser Optical Holospec monochromator equipped with a liquid nitrogen cooled CCD camera.

Results and discussion

 $B_3H_8^-$ is a fluxional ion which is formed as an intermediate during the reversible dehydrogenation of Mg(BH₄)₂ and

Y(BH₄)₃ [35–37]. The interconversion between its possible different forms occurs by hydrogen migration [38]. In this study, we consider the most stable conformer of $B_3H_8^-$ and compare its vibrational properties to those of the complex Mg(B_3H_8)₂.

Fig. 1 shows the most stable conformer of $B_3H_8^-$ as well as $Mg(B_3H_8)_2$. $B_3H_8^-$ in its most stable form is of $C_{2\nu}$ symmetry and has two B-H-B bridges (Fig. 1a). This form is preserved for the $B_3H_8^-$ moities of the complex $Mg(B_3H_8)_2$, which is of C_{2h} molecular symmetry. However, due to the coordination to Mg^{2+} , the B-H bond lengths for the outer H atoms (H_o) are shorter (1.185–1.188 Å) than those involving the inner (H_i) and bridging (H_b) hydrogen atoms (B-H_i = 1.223–1.229 Å, B-H_b = 1.255–1.469 Å). Fig. 2 compares the calculated IR and Raman spectra of $Mg(B_3H_8)_2$ with those of $B_3H_8^-$, which we previously reported [27].

Upon coordination to Mg²⁺, the B-H_t (H_t: terminal H atoms) stretching modes of $B_3H_8^-$ around 2500 cm $^{-1}$ are split into B- H_{o} and $B-H_{\text{i}}$ stretching modes. The frequencies of the $B-H_{\text{o}}$ stretching modes are larger than those of the B-H_i stretching modes. The B-Ho stretching modes are found around 2550 $\mbox{cm}^{-1}\mbox{,}$ while the $\mbox{B-H}_{i}$ stretching modes are found between 2200 ${\rm cm^{-1}}$ and 2300 ${\rm cm^{-1}}$. One also notes that the B–H $_{\rm b}$ stretching modes have lower frequencies than the B-Ho and B-H_i stretching modes: these modes are indeed found around 2150 cm⁻¹. Table 1 summarizes the lengths and the associated anharmonic stretching frequencies of the different types of B-H bonds found in B₃H₈ and in Mg(B₃H₈)₂. Its inspection shows that the B-H bond lengths and stretching frequencies in B₃H₈ are both significantly influenced by the coordination to Mg²⁺, and that the stretching frequency is larger the shorter the B-H bond. This observed correlation provides us with a

Fig. 1 – The most stable conformer of $B_3H_8^-$ ion (a) and the complex $Mg(B_3H_8)_2$ (b).

Fig. 2 – Calculated anharmonic IR (left) and Raman (right) spectra of $B_3H_8^-$ [27] and $Mg(B_3H_8)_2$.

Please cite this article in press as: Sethio D, et al., Computational study of the vibrational spectroscopy properties of boron-hydrogen compounds: $Mg(B_3H_8)_2$, $CB_9H_{10}^-$ and $CB_{11}H_{12}^-$, International Journal of Hydrogen Energy (2017), http://dx.doi.org/10.1016/j.ijhydene.2017.03.044

Download English Version:

https://daneshyari.com/en/article/5145483

Download Persian Version:

https://daneshyari.com/article/5145483

<u>Daneshyari.com</u>