ARTICLE IN PRESS

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (2017) 1-19

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Experimental and numerical analysis of a methane thermal decomposition reactor

D. Paxman ^{b,c}, S. Trottier ^c, M.R. Flynn ^a, L. Kostiuk ^a, M. Secanell ^{b,*}

^a Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada

^b Energy Systems Design Laboratory, Department of Mechanical Engineering, University of Alberta, Edmonton, AB,

Canada

^c InnoTech Alberta, Karl Clark Road, Edmonton, AB, Canada

ARTICLE INFO

Article history: Received 26 May 2017 Received in revised form 12 August 2017 Accepted 21 August 2017 Available online xxx

Keywords:

Hydrogen production Methane thermal decomposition Numerical modeling Reactor design

ABSTRACT

An indirectly heated tubular reactor is fabricated and used to study methane thermal decomposition conversion and determine kinetic parameters. A combined perfectly mixed reactor with bypass (CPMR) is proposed as an alternative to the traditional perfectly mixed and plug flow reactors. The CPMR model is used in order to account for buoyancy flow in the reactor. Results comparing the numerical predictions from all three models to experimental data show that buoyancy effects are significant in the reactor under study and also in most reactors in the literature. Including this effect might significantly improve the accuracy of the model predictions. The CPMR reactor model with a reaction rate constant of 5.43×10^{15} 1/s and an activation energy of 420.7 kJ/mol is capable of reproducing the obtained experimental data in this study and in the literature.

© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Hydrogen production is expected to rise to approximately 9-32 Mt by 2030 and to 104-309 Mt by 2050 [1]. Steam methane reforming is the conventional technology used to produce nearly all HH₂ [2]. However, steam methane reforming is CO₂ intensive, producing about 11.9 kg of CO₂ per kg of H₂ [2,3]. Therefore, other methods of H₂ production that minimize greenhouse gas emissions need to be developed.

Thermal decomposition of methane provides an alternative to steam methane reforming. Since this process results only in hydrogen and solid carbon, it does not produce any CO_2 as long as the thermal source does not produce emissions, and therefore any greenhouse gas emissions are eliminated as long as all methane is consumed during the reaction. The produced solid carbon can then be collected and stored and, in some instances, used for commercial applications such as to produce rubber and catalyst supports. Table 1 contains a review of experimental and numerical work performed to date to investigate CH_4 decomposition, also known as cracking. Non-catalytic cracking is the focus of this article, even though most researchers have studied reactors with catalyst such as carbon black, activated carbon and metals. The cracking process produces carbon as a byproduct, which may be autocatalyzing. Steinberg [4] found that fine sub-micron carbon particles formed by CH_4 cracking can autocatalyze the reaction. However, Muradov et al. [5] found that the carbon produced by CH_4 cracking is insufficient to autocatalyze the

* Corresponding author.

E-mail address: secanell@ualberta.ca (M. Secanell).

http://dx.doi.org/10.1016/j.ijhydene.2017.08.134

0360-3199/© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Paxman D, et al., Experimental and numerical analysis of a methane thermal decomposition reactor, International Journal of Hydrogen Energy (2017), http://dx.doi.org/10.1016/j.ijhydene.2017.08.134

ARTICLE IN PRESS

international journal of hydrogen energy XXX (2017) 1–19

Table 1 – Experimental ar	nd kinet	ic studie	s found in literature				
Author	Year	Study type	Operating conditions	Catalyst	λ	k ₀ (1/s)	E _a (kJ/mol)
Eisenberg and Bliss [9]	1967	Both	1373–1473 K 101 kPa	None	Not first	-	_
 7 mm fused quartz tube. Here Dimensionless PMR assumed	ated by e d.	lectric resi	stance coils				
 Five reaction mechanism Temperature profile measur equation over the reactor lender 	ed using 1gth.	thermoco	uple. Isothermal effecti	ve temperature a	ssumed usin	g an integration of the A	Arrhenius
Study suggests that the over	all reacti	on was no	t first order within the	operating temper	rature.	14	
Khan and Crynes [33]	1970 given in	Both	Various	none	n/a	1.30×10^{14}	151—422
 Few overall pre-exponential factors given because review is of proposed reaction mechanisms. 							
• Most papers reviewed assum	ned first o	order kine	tics.				
Billaud et al. [10]	1992	Both	1263 K 101 kPa	none	n/a	_	-
• 12 mm ID alumina tube. Hea	ated by ar	n electric f	urnace.				
 Dimensionless PMR assumed. Temperature profiling likely an effect because tube extended out of furnace at both ends. Isothermal temperature was assumed. 							
• 119 reaction mechanism.						10	
Olsvik et al. [11]	1995	Both	1473–1773 K 101 kPa	none	1	1.00×10^{13}	366
• 4 or 9 mm ID alumina tube.							
• 1D PFR comprised of 30 micromixed reactors assumed.							
Arrhenius equation over the	reactor l	ength.	apie. Isouierinai eriecu	ve temperature a	ssumed usin	g all integration of the	
 36 reaction mechanism used 	l, howeve	er overall l	cinetic parameters were	e calculated.			
Steinberg [4]	1998	Both	973–1173 K	none	1	$5.4 imes 10^3$	131
• 2.54 cm ID Inconel 617 tube	Total he	ated tube i	2837-5674 kPa length is 2.44 m_with 0	91 m cooling zon	e Heated by	clamshell electric heat	ers
 Isothermal temperature assu PMR assumed 	umed.		icingur 15 2.11 m, with 0	.91 m coomig zon	ie. Heatea by		c15.
Dahl et al. [23]	2002	Model	1533–2144 K 101 kPa	carbon	4.4	6×10^{11}	208
• Reactor based off of 7.6 mm	ID porou	s graphite	tube fluid wall reactor	designed by Ref.	[40].		
• Gas and carbon temperatures assumed to vary axially. Wall temperature is assumed to be isothermal.							
 1D PFR model assumed. Heterogeneous reaction med 	hanieme	were igno	ared				
Hirsch and Steinfeld [12]	2004	Exp	900–1550 K	Carbon	-	-	-
• Vertically orientated 10 cm ID steel-alloy vortex flow reactor. Heated by direct concentrated solar energy.							
• Difficulties in keeping the quartz window clean were noted due to buoyancy effects.							
Trommer et al. [13]	2004	Both	900–1060 K 101 kPa	carbon	1	$1.07 \times 10^{6} \text{ PFR}$ 7 54 × 10 ⁶ PMR	147 PFR 162 PMR
• Vertically orientated vortex	flow reac	tor. Heate	d by direct concentrate	d solar energy.		7.51 × 10 1 Mit	102 1 1011
• Kinetics found assuming a s	ingle isot	hermal te	mperature				
Kinetics found assuming a s	ingle isot	hermal te	mperature				
ID PFR and dimensionless P. Volume expansion factor us	MK MOde ed in ana	lis assume	a.				
Abanades and Flamant [14]	2006	Both	1563—1813 K	none	1	2×10^8	147
			101 kPa				
• Vertically orientated 17 mm	OD by 61	mm long	graphite tube. Heated	with a beam-dow	n solar furna	ace, thus higher temper	atures
are at the top portion of the tube.							
 E_a set to 147 k)/filor as per fil Kinetics assumed from Tron 	nmer et a	l. [13].	manigs.				
 1D PFR model of reaction gas reactions ignored, but kineti 	s-filled re cs assum	actor was ed were fo	created. Temperature a pr particle seeded react	and CH ₄ conversions. A mean wall t	on equations	were included. Heterog was assumed using exp	geneous erimental
pyrometry measurements.			1		1	0 1	
• 2D model of an inert gas-filled reactor was created assuming laminar parabolic velocity profile with conduction and radiation. A mean							
 a) and a provide the second sec							
allowing varying wall temperatures. Governing equations were not defined.							
Abanades and Flamant [15]	2007	Both	1500–2000	none	1	$2.5 - 4.5 imes 10^{7}$	147
						$5-8\times10^{10}$	250
						$4.5-5.5 imes 10^{13}$	350

Please cite this article in press as: Paxman D, et al., Experimental and numerical analysis of a methane thermal decomposition reactor, International Journal of Hydrogen Energy (2017), http://dx.doi.org/10.1016/j.ijhydene.2017.08.134 Download English Version:

https://daneshyari.com/en/article/5145620

Download Persian Version:

https://daneshyari.com/article/5145620

Daneshyari.com