ARTICLE IN PRESS

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (2017) 1-16

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Effect of membrane electrode assembly design on the cold start process of proton exchange membrane fuel cells

Zirong Yang, Qing Du^{**}, Sen Huo, Kui Jiao^{*}

State Key Laboratory of Engines, Tianjin University, 135 Yaguan Road, Tianjin, 300350, China

ARTICLE INFO

Article history: Received 30 June 2017 Received in revised form 11 August 2017 Accepted 17 August 2017 Available online xxx

Keywords: Micro-porous layer Ice formation Water transport Maximum power startup mode

ABSTRACT

A transient multiphase model for cold start process is developed considering micro-porous layer (MPL), super-cooled water freezing mechanism and ice formation in cathode channel. The effect of MPL's hydrophobicity on the output performance and ice/water distribution is investigated under various startup temperatures, structural properties, membrane thicknesses and surrounding heat transfer coefficients. Under the maximum power startup mode, it is found that the hydrophobicity disparity of MPL has negligible influences when started from -15 °C, but it strongly affects the overall performance when started from -10 °C, especially after the cell survives the cold start. Decreasing the MPL's hydrophobicity leads to higher current density, meanwhile, it facilitates the super-cooled water's removal, which in turn reduces the ice formation in catalyst layer. However, excessive water accumulation happens if the generated water is hindered from getting into gas diffusion layer (GDL) due to the significant hydrophobicity gap. Weakening the GDL's hydrophobicity contributes to the water removal since the generated water is easier to diffuse out. A thinner membrane benefits the cold start owing to the reduction of ohmic loss and improvement of membrane hydration, and is more sensitive to the hydrophobicity of MPL. Ice formation in cathode channel is identified under various surrounding heat transfer coefficients.

© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Proton exchange membrane fuel cell (PEMFC) is widely recognized as one of the most promising energy sources for automobile applications in the future, owing to its high power density, high electric efficiency and zero emission. Despite those brilliant advantages, there are some problems remained to be solved before its successful commercialization such as cold start, which means startup from subzero temperatures. During a cold start process, water generated through electrochemical reaction freezes to ice/frost, leading to severe blockage of effective reaction sites and transport passages through the porous layers, thereby, hindering the occurrence of oxygen reduction reaction (ORR) and transport of gas reactants. Moreover, when water turns into ice, its volume expands, and this could irreversibly damage the microscopic structure of component layers, resulting in performance degradation [1,2]. In general, cold start process is the competition between ice formation and heat generation. If the cell's

HYDROGEN

** Corresponding author.

E-mail addresses: duqing@tju.edu.cn (Q. Du), kjiao@tju.edu.cn (K. Jiao). http://dx.doi.org/10.1016/j.ijhydene.2017.08.106 0360-3199/© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Yang Z, et al., Effect of membrane electrode assembly design on the cold start process of proton exchange membrane fuel cells, International Journal of Hydrogen Energy (2017), http://dx.doi.org/10.1016/j.ijhydene.2017.08.106

^{*} Corresponding author.

ARTICLE IN PRESS

international journal of hydrogen energy XXX (2017) $1\!-\!\!1\,6$

Nomenclature		BP	bipolar plate
a	water activity	С	cathode, capillary
A	cell geometric area. m ²	CH	flow channel
ASR	area specific resistance. Ω cm ²	CL	catalyst layer
C	mole concentration, mol m^{-3}	conc	concentration
Cm	specific heat $I k \sigma^{-1} K^{-1}$	eff	effective
D	mass diffusivity, $m^2 s^{-1}$	ele	electronic
EW	equivalent weight of membrane 1.1 kg mol^{-1}	eq	equilibrium
 F	Faraday's constant 96487 C mol $^{-1}$	f	frozen
h	surrounding heat transfer coefficient. W m ^{-2} K ^{-1}	fl	fluid phase
I	current density $A \text{ cm}^{-2}$	FPD	freezing point depression
i	reaction rate A m^{-3}	fmw	frozen membrane water
þ	thermal conductivity $W m^{-1} K^{-1}$	g	gas phase
ĸ	nermeability m ²	GDL	gas diffusion layer
M	molecular weight kg mol ^{-1}	H ₂ O	water
101	electro-osmotic drag coefficient	ice	ice
nd	pressure Pa	ion	ionic
Р Р	power W	1	liquid phase
	power, w heat transfer rate W	lq	liquid water
P	universal gas constant 8 314 $\text{Imol}^{-1} \text{K}^{-1}$	mem	membrane
r	nore radius m	MPL	micro-porous layer
r c	volume fraction	Ν	normal condition
S	source terms entropy $I \mod^{-1} K^{-1}$	nerest	Nerest
+	time s	nf	non-frozen
د 1+	time sten size s	nmw	non-frozen membrane water
T	temperature K	ohmic	ohmic
т ⁰	standard tomporature 200 K	out	output
V	voltage V	per	permeation
v	voltage, v	react	reaction
Greek letters		ref	reference state
α	transfer coefficient	sat	saturation
ε	porosity	sl	solid phase
ζ	water transfer rate, s ⁻¹	suplq	super-cooled water
к	electric conductivity, S m^{-1}	surr	surroundings
λ	water content	Т	energy (for source term)
ξ	stoichiometry ratio	vp	water vapor
μ	dynamic viscosity, kg m $^{-1}$ s $^{-1}$	n-f	non-frozen membrane water to frozen membrane
ρ	density, kg m $^{-3}$		water
ω	volume fraction of ionomer	n-suplq	non-frozen membrane water to super-cooled
σ	surface tension, N m^{-1}		water
δ	thickness, m	n-v	non-frozen membrane water to water vapor
Cultoria	ate and amazarista	suplq-i	super-cooled water to ice
Subscrip	and superscripts	v-l	water vapor to liquid water
a	anoue	v-suplq	water vapor to super-cooled/liquid water
act	activation		
aun	aunosphere		

temperature rises above 0 °C before the porous layers are fully occupied by ice, the cold start is successful. Thus, water management is of vital significance since it is beneficial to decrease ice formation by expelling the generated water out of porous layers as quickly as possible, meanwhile, it is necessary to maintain the membrane hydration for good proton conductivity.

In the past decades, both experimental and modeling studies have been carried out to investigate the cold start process. Experimental studies have mainly focused on the effects of operating conditions [3–7], structure designs [8–11]

and visualization of ice formation [12–18]. To cast more sights on the freezing process inside fuel cells, technological methods such as electrochemical impedance spectroscopy [4], scanning electron microscopy [11,12,18], infrared radiation imaging [13,14], X-ray and neutron diffraction [15,19], Raman spectroscopic examination [20] have been adopted. In previous visualization studies, the state of super-cooled water was extensively identified. Ishikawa et al. [13,14] developed a system using visible and infrared images to investigate the phenomenon of water freezing at subzero temperatures. The authors pointed out that water was generated in a super-

2

Please cite this article in press as: Yang Z, et al., Effect of membrane electrode assembly design on the cold start process of proton exchange membrane fuel cells, International Journal of Hydrogen Energy (2017), http://dx.doi.org/10.1016/j.ijhydene.2017.08.106

Download English Version:

https://daneshyari.com/en/article/5145641

Download Persian Version:

https://daneshyari.com/article/5145641

Daneshyari.com