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a b s t r a c t

In this paper, the formulation of a novel 1D frame compound-element for the materially and

geometrically non-linear analysis of steel frames with flexible connections is outlined. The element

is formulated based on the force interpolation concept and the total secant stiffness approach, and

implemented in a FORTRAN computer code. The accuracy and efficiency of the formulation are verified

through some numerical examples. For steel frames with bolted flush end-plate and extended end-

plate connections, a static and dynamic progressive collapse assessment based on the alternate load

path (ALP) method is undertaken by employing the developed analytical tool and dynamic load factor

(DLF) is estimated. Furthermore, the implications of analyzing semi-rigid steel frames based on the

assumption of fixed connections and the effects of the connection details on the global response of a

frame during different progressive collapse scenarios are investigated.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Steel frames are usually designed based on the assumption of
either idealized rigid or pinned beam-to-column connections (or
joints) [1]. It has been well-established that the majority of beam-
to-column joints, however, do not show such idealized behavior.
Connections of this type are known flexible (semi-rigid connec-
tions), and their rigorous inclusion in the analysis and design of
steel framed structures is fraught with difficulty.

Over the last two decades, a large number of studies have been
devoted to steel and steel–concrete composite frames with semi-
rigid connections [2–6]. Studies covering various aspects of steel
and composite frames with flexible connections, such as the
global behavior of the frame including material and geometrical
non-linearities [7–10], theoretical and experimental investiga-
tions of behavioral models for the connections [11–15], the global
buckling and stability of steel frames [16,17] and analyses of
semi-rigid steel frames under cyclic, seismic and blast loads
[18–20].

For the non-linear finite element analysis of steel frames, two
different classes of model are available, viz. continuum-based
formulations and discrete 1-D frame elements, which have
different domains of applicability [4,11]. Non-linear continuum-

based models offer good versatility and accuracy which are
required for the detailed study of local effects, but they are very
time-demanding from a computational point of view for the
analysis of multiple storey–multiple bay frames with large
numbers of degrees of freedom. Such demands on computational
resources make the continuum-based FE modeling of large
structures inefficient and inapplicable. Discrete 1-D frame mod-
els, however, are a good compromise between accuracy and
efficiency for predicting the global response of framed structures
[2,7,8,21–25].

Progressive collapse is an important issue in structural failure,
and has been so since the well-reported partial collapse of the
Ronan point apartment building in London in 1968. Since this
time, progressive collapse analysis has been the subject of much
research endeavor with regard to the global response of members
[26–31], however, less attention has been paid to the effect of the
stiffness and strength of the joints and their behavior on the
global response [31–35]. One procedure for investigating the
potential for progressive collapse is based on the so-called
alternative path method (APM), which has been integrated into
several building codes [36,37], and in different forms has been
adopted by researchers for the numerical modeling of reinforced
concrete and steel frames [22,28,29,38,39]. In the APM approach,
one or more columns are assumed to fail and are removed from
the structural model with the remaining structure analyzed
to determine whether other members (or the structure) will
fail or not.
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In this paper, the force interpolation concept is employed to
formulate an efficient non-linear compound-element, comprising
of a frame element with nodal springs. The geometrical non-
linearity is taken into account by decomposing the element
displacements into a rigid body rotation and deformations [40].
The effect of the transverse displacement on the axial strain is
taken into account; however, the strains are taken to be small.
The element formulation is implemented in a FORTRAN computer
code and the numerical tool developed is employed for static and
dynamic progressive collapse assessment of steel frames with
bolted flush end-plate and extended end-plate connections and
the dynamic load factor (DLF) is estimated. Furthermore, the
effects of connection details (i.e. the position of the bolts and the
end-plate thickness) on the global response of steel frames with
semi-rigid connections during scenarios of progressive collapse
are investigated.

2. Element formulation

2.1. Compatibility equations

Adopting the Navier–Bernoulli assumptions, section compat-
ibility requirements produce

ex ¼ er�yk, ð1Þ

where ex denotes the total strain at an integration point in the
local x–x direction (along the element axis; Fig. 1(a)), er is the
section axial strain, k is the total curvature of section and y is the
distance of the integration point (fiber) from the mid-plane of the
element (Fig. 1(a)).

Fig. 1(a) shows a 2-node plane frame element AB with three
degrees of freedom at each node. Furthermore, at each nodal
point the element is attached to a rotational and a translational
spring, which represent the flexural and axial stiffness of the
connections at this point respectively (Fig. 1(a)). The generalized
nodal displacement and force vectors (with rigid body modes
included) are denoted by q and Q, respectively. Using the
principle of virtual force and integration by parts for the simply
supported configuration shown in Fig. 1(b), the strain-deforma-
tion compatibility equation for the element (without nodal
springs) is obtained as

q0 ¼
Z l

0
b

T
½x,wðxÞ�dðxÞdx, ð2Þ

where

b½x,wðxÞ� ¼
�1 0 0

�wðxÞ=2 x=l�1 x=l

" #
, ð3Þ

q0 ¼ q01�q001 q02 q03
h iT

is the generalized nodal deformation

vector of the frame element excluding the nodal springs (without

rigid body modes) and dðxÞ ¼ er k
� �T

is the section generalized

strain vector.

2.2. Equilibrium equations and constitutive material law for steel

Adopting the small slope assumption (sinyffitanyffiy¼w0),
the equilibrium equations for the free body of Ax (Fig. 2) produce

NðxÞ�VðxÞyðxÞþQ1 ¼ 0, ð4Þ

NðxÞyðxÞþVðxÞþðQ2þQ3Þ=l¼ 0, ð5Þ

MðxÞþQ1wðxÞþð1�x=lÞQ2�ðx=lÞQ3 ¼ 0, ð6Þ

where N(x) and V(x) represent the section normal (axial) and
tangential (shear) forces respectively, and y(x) is the section
rotation.

Rearranging Eqs. (4)–(6), leads to the matrix representation

DðxÞ ¼ b½x,wðxÞ,yðxÞ�QþD
n
ðxÞ, ð7Þ

where

b½x,wðxÞ,yðxÞ� ¼
�1 �yðxÞ=l �yðxÞ=l

�wðxÞ x=l�1 x=l

" #
, ð8Þ

Q ¼ Q1 Q2 Q3

h iT
denotes the nodal force vector (in the

system without rigid body modes), DðxÞ ¼ NðxÞ MðxÞ
� �T

is the
section internal force vector and D

n
ðxÞ is the section internal force

vector due to the element load. It is noteworthy that D
n
ðxÞ is a

function of the element rigid body rotation when gravity loads act
on the element.

Equilibrium across the section requires that

DðxÞ ¼
R
Osx dA �

R
Oysx dA

h iT
, ð9Þ

where y is the distance of the integration point from the element
mid-plane, sx is the total x–x stress component at the monitoring
points and O represents the cross-sectional domain.

Decomposing the total strain ex into its elastic eex and inelastic
epx components, the total stress and strain in the x–x direction can
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Fig. 1. (a) 2-node frame element AB in x–y plane and (b) outline of the simply supported configuration (system without rigid body modes).
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Fig. 2. Equilibrium in the simply supported configuration and free body diagram

of Ax, after deformation (system without rigid body modes).
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