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a b s t r a c t

This paper describes a numerical method for calculation of the sensitivity and Hessian matrix of the

response PSD functions of structures subjected to uniformly modulated evolutionary random seismic

excitation. The method is formulated based on the pseudo excitation method and Newmark method.

The evolutionary non-stationary random response analysis is converted into step-by-step integration

computations using the pseudo excitation method. The formulas of the pseudo responses, their first and

second derivatives with respect to the structural design variables are derived based on the Newmark

method. The PSD functions, their sensitivity and Hessian matrix are calculated using the pseudo

responses, their first and second derivatives, respectively. Then the computation procedure of

sensitivity and Hessian matrix of PSD functions is given in detail. Finally, the PSD functions’ sensitivity

and Hessian matrix analysis of a three-story, two-bay planar frame subjected to the uniformly

modulated evolutionary random earthquake ground motion has been studied to elucidate the proposed

method.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

The sensitivities of structural dynamic responses are the
essential information for the gradient-based optimization meth-
ods and needed in structural dynamic reliability analysis, optimi-
zation and identification, etc. The sensitivity [1–3] and Hessian
matrix [4,5] analysis of structures subjected to transient dynamic
loads are studied but restricted to deterministic dynamic loads.
However, in reality, the major dynamic loads, i.e., earthquake,
wind and wave, on structures are stochastic process in nature. The
responses of a structure subjected to such uncertain loads are also
stochastic in nature [6,7]. The concept of stochastic sensitivity has
been early proposed by Socha [8] and Szopa [9]. Several papers
have been devoted to the response sensitivity analysis of struc-
tures subjected to stochastic processes. As an example, Chaudhuri
and Chakraborty [10] dealt with the response sensitivity evalua-
tion in double frequency domain of structures subjected to the
non-stationary earthquake motion. Benfratello et al. [11] proposed
a procedure, in the time domain, to evaluate the sensitivity of the
statistical moments of the structural response for stationary
Gaussian and non-Gaussian white input processes. Cacciola et al.
[12] presented a method for the evaluation of the response
sensitivity of both classically and non-classically damped discrete

linear structural systems under stochastic actions. However, there
is little work published on Hessian matrix analysis of the
responses of structures subjected to stochastic excitation. The
sensitivity and Hessian matrix are often simultaneously used in
the solution of various problems. In structural optimal design, they
are often required to select a search direction and search step in
some mathematics programming methods, such as Newton’s
method and second order optimization methods [13].

Power spectral density functions, i.e., PSD functions, are very
important physical quantity for random seismic responses
[14,15]. For example, for zero mean stationary random proces-
sing, variance can be calculated if the Auto-PSD function is first
obtained. Furthermore, if the random seismic response process is
normal stochastic process, the probability density function and
probability distribution function are completely determined too.
Sensitivity analysis of PSD functions for random seismic
responses deals with calculation of the first derivatives of PSD
functions with respect to the structural design variables and
Hessian matrix analysis of PSD functions for random seismic
responses deals with calculation of the second derivatives of PSD
functions with respect to the structural design variables.

The purpose of this paper is to develop a numerical method for
calculation of the sensitivity and Hessian matrix of the response
PSD functions of structures subjected to the uniformly modulated
evolutionary random excitation. The paper is arranged as follows.
In Section 2, the evolutionary non-stationary random response
analysis is converted into step-by-step integration computations
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using the pseudo excitation method [16,17]. The formulas for the
pseudo responses and PSD function matrix are derived based on
Newmark-b method. In Section 3, the formulas for the first
derivatives of PSD functions are derived by direct differentiation.
In Section 4, the formulas for the second derivatives of PSD
functions are also derived by direct differentiation. In Section 5,
the procedure of calculating PSD functions, their first and second
derivatives is given in detail. Finally, the PSD functions’ sensitivity
and Hessian matrix analysis of a three-story, two-bay planar
frame subjected to uniformly modulated evolutionary random
earthquake ground motion is demonstrated with the proposed
method.

2. Formulas for PSD functions

When a structure is subjected to uniformly modulated evolu-
tionary random ground acceleration excitation €xgðtÞgðtÞ, the
governing equation of structural dynamics can be expressed as
follows:

M €xðtÞþC _xðtÞþKxðtÞ ¼ �MEu €xgðtÞgðtÞ ð1Þ

With initial conditions

xð0Þ ¼ 0

_xð0Þ ¼ 0

(
ð2Þ

where M, C, K are the structural mass matrix, damping matrix and
stiffness matrix, respectively. x(t), _xðtÞ and €xðtÞ are the displace-
ment, velocity and acceleration vectors relative to the ground,
respectively. Eu is a vector. For planar frame structures,
Eu ¼ 1 0 0 1 0 0 � � � 1 0 0½ �

T . €xgðtÞ is the ground horizontal accel-
eration time history and g(t) is the modulated function

gðtÞ ¼ A½e�g1t�e�g2t� ð3Þ

where A, g1 and g2 are constants.
Rayleigh damping is used in this work, the structural damping

matrix is

C ¼ a1Mþa2K ð4Þ

where

a1 ¼
2o1o2ðz1o2�o1z2Þ

o2
2�o2

1

ð5Þ

a2 ¼
2ðz2o2�z1o1Þ

o2
2�o2

1

ð6Þ

where o1 and o2 are the first and second natural frequency of the
structure, respectively. z1 and z2 are the first and second mode
damping ratios, respectively.

Pseudo excitation method converts any stationary random
response analysis into harmonic response analyses, and converts
any evolutionary non-stationary random response analysis into
step-by-step integration computations. The pseudo excitation of
ground acceleration is constructed as follows:

~f ðo,tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S €xg
ðoÞ

q
gðtÞeiot ð7Þ

where S €xg
ðoÞ is the power spectrum of ground acceleration, it can

be presented by the Kanai–Taijimi expression [18]

S €xg
ðoÞ ¼

1þ4B2
g ðo=ogÞ

2

½1�ðo=ogÞ
2
�2þ4B2

g ðo=ogÞ
2

S0 ð8Þ

where og is the natural ground frequency, Bg is the viscous
damping for the ground and S0 is the intensity parameter.

Eqs. (1) and (2) become

M €~xðo,tÞþC _~xðo,tÞþK ~xðo,tÞ ¼ �MEu
~f ðo,tÞ ð9Þ

With initial conditions

~xðo,0Þ ¼ 0
_~xðo,0Þ ¼ 0

(
ð10Þ

Eqs. (9) and (10) must be satisfied for all time period tA[0,Te],
Te is the duration of earthquake, at any frequency o. The most
widely used family of direct time integration methods for solving
Eq. (9) is the Newmark family of methods. The Newmark method
can be formulated by considering equilibrium at any discrete time
tþDt, and is given by the following equation:

M €~xðo,tþDtÞþC _~xðo,tþDtÞþK ~xðo,tþDtÞ ¼�MEu
~f ðo,tþDtÞ

ð11Þ

The Newmark-b method is an implicit technique, which
consists of the following finite difference assumptions with
regard to the evolution of the approximate solution:

~xðo,tþDtÞ ¼ ~xðo,tÞþDt _~xðo,tÞþDt2½ðð1=2Þ�bÞ €~xðo,tÞþb €~xðo,tþDtÞ�

ð12Þ

_~xðo,tþDtÞ ¼ _~xðo,tÞþDt½ð1�dÞ €~xðo,tÞþd €~xðo,tþDtÞ� ð13Þ

where any particular choice of the parameters b and d determines
the stability and accuracy characteristics of the solution. In this
work, we chose the parameters dZ0.5 and b¼0.25(0.5þd)2. We
also define the integral constants: a0¼1/(bDt2), a1¼d/(bDt),
a2¼1/(bDt), a3¼(1/(2b))�1, a4¼(d/b)�1, a5¼(Dt/2)((d/b)�2),
a6¼Dt(1�d), a7¼dDt. The parameters b and d will be replaced
by those constants in the following formulas.

In addition to Eqs. (12) and (13) the equilibrium equation (11)
at time station tþDt is considered. This way a system of
equations is formed for the determination of the three unknowns
~xðo,tþDtÞ, _~xðo,tþDtÞ and €~xðo,tþDtÞ, assuming that the pseudo
displacement, velocity and acceleration vectors at the previous
time station t have already been computed. Thus, the solution for
the pseudo displacement vector is

Kn ~xðo,tþDtÞ ¼ ~F n
ðo,tþDtÞ ð14Þ

where

Kn
¼Kþa0Mþa1C ð15Þ

and

~F n
ðo,tþDtÞ ¼�MEu

~f ðo,tþDtÞþM½a0 ~xðo,tÞþa2
_~xðo,tÞþa3

€~xðo,tÞ�

þC½a1 ~xðo,tÞþa4
_~xðo,tÞþa5

€~xðo,tÞ� ð16Þ

The matrix Kn is positive definite and symmetric. So it can be
uniquely done via triangular factorization

Kn
¼ LDLT

ð17Þ

where L is lower triangular matrix and D is diagonal matrix.
Therefore, Eq. (14) can be solved as follows:

~xðo,tþDtÞ ¼ ðL�1
Þ
T D�1L�1 ~F n

ðo,tþDtÞ ð18Þ

The pseudo accelerations, €~xðo,tþDtÞ, which are required for
the computations at the next time station, can be calculated as
follows:

€~xðo,tþDtÞ ¼ a0½ ~xðo,tþDtÞ� ~xðo,tÞ��a2
_~xðo,tÞ�a3

€~xðo,tÞ ð19Þ

while the pseudo velocities, _~xðo,tþDtÞ, can be obtained directly
from Eq. (13)

_~xðo,tþDtÞ ¼ _~xðo,tÞþa6
€~xðo,tÞþa7

€~xðo,tþDtÞ ð20Þ

The PSD function matrix is

Sxðo,tþDtÞ ¼ ~xnðo,tþDtÞU½ ~xðo,tþDtÞ�T ð21Þ

where ‘n’ is a complex conjugate.
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