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a b s t r a c t

Two sets of lateral vibration equations for a spinning axially loaded twisted Timoshenko beam have

been studied. The compressed axial load is assumed to be normal to the shear force and tangential to

the axis of the beam for the two systems, respectively. A quadratic eigenvalue problem of a real

gyroscopic system is formulated and utilized to investigate the free vibration and buckling stability

of various twisted Timoshenko beams. Some typical results are compared with numerical results in the

published literature to validate the accuracy of the presented analysis. The influence of thickness-

to-width ratio, twist angle, spinning speed and axial load on the natural frequency and buckling load

of Timoshenko beams has been investigated and discussed. Comparisons between the results of the

two sets of system equations are also made to justify the effect of the axial load for various

Timoshenko beams.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Vibration and stability analyses of non-rotating and rotating
beams with or without axial loads have been investigated
extensively since the dynamic problem of beams is important in
the design of machines and structures. Typical examples include
rotating shafts, satellite booms, turbine blades, drill bits, end-
milling cutters and boring bars. Spinning straight circular beams
are often used to model the rotating shafts and satellite booms.
Pre-twisted beams and spinning pre-twisted beams have been
utilized to analyze successfully the dynamic behavior of turbine
blades and fluted cutters, respectively. During drilling or milling
process, the fluted cutters are always subjected to axial forces.
Thus, the effect of axial load has to be considered in the
vibrational analysis of fluted cutters in addition to the rotational
speed. Generally, the problem of vibration behavior of the
untwisted and twisted beam structures has been analyzed based
on the Euler beam theory or the Timoshenko beam theory.
A general review of the dynamic aspects of twisted beams can be
found in review paper by Leissa [1] and Rosen [2].

Based on the Euler–Bernoulli beam theory, the effect of the
twist angle on the natural frequencies and mode shapes of the
cantilever turbine blade had been studied in [3–5]. Rayleigh’s
method was used by Carnegie [3] to evaluate the bending
frequencies and mode shapes of pre-twisted cantilever rectan-
gular beams. The results revealed that the pretwist slightly
increases the fundamental frequency. The numerical integration

method of solving the system equations of motion of first-order
was applied by Dawson and Carnegie [4] to find the modal curves
of pre-twisted rectangular beams with different width to depth
ratios and pretwist angles. The theoretical results were in good
agreement with the experimental ones. A finite element model
with a cubic polynomial displacement function was presented by
Sabuncu [5] to analyze the bending vibration of pre-twisted
blading with uniform cross section. In comparison with results
between linearly and nonlinearly pre-twisted beams, the devia-
tions increased as increasing pretwist angle. By treating the blade
as a pre-twisted Timoshenko beam, the vibration equations of
motion of the pre-twisted blade were developed using different
techniques [6–13] to study the effects of geometric aspects, rotary
inertia and shear deformation on the lateral frequencies of the
blade. The variational method was utilized by Carnegie [6] to
derive the bending–bending–torsion equations of motion for a
pre-twisted cantilever blade allowing for the shear deformation
and rotary inertia effects. The transformation method was used by
Dawson et al. [7] to investigate the effect of slenderness ratio on
the natural frequencies of pre-twisted cantilever Timoshenko
beams. Theoretical results were higher than the experimental
data and the discrepancy increased as the beam length decreased.
The finite element method was employed by Gupta and Rao [8] to
evaluate the natural frequencies of uniformly pre-twisted tapered
cantilever Timoshenko beams. The effects of shear deformation
and rotary inertia reduce the frequencies, especially for higher
modes of vibration. A simple finite element model was presented
by Abbas [9] for dynamic analysis of thick pre-twisted blades. The
simple model gave close approximation of natural frequencies.
The Reissner method and the total potential energy approach

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/finel

Finite Elements in Analysis and Design

0168-874X/$ - see front matter & 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.finel.2010.07.020

E-mail address: wrchen@faculty.pccu.edu.tw

Finite Elements in Analysis and Design 46 (2010) 1037–1047

www.elsevier.com/finel
dx.doi.org/10.1016/j.finel.2010.07.020
mailto:wrchen@faculty.pccu.edu.tw
dx.doi.org/10.1016/j.finel.2010.07.020


were used by Subrahmanyam et al. [10] to obtain the natural
frequencies of pre-twisted cantilever blades. The results indicated
that the Reissner method gives a faster convergence than the
potential energy method. Based on Hamilton’s principle, the
bending–bending forced vibration equations of motion
were established by Lin et al. [11] for a nonuniformly pre-twisted
Timoshenko beam with general elastic boundary conditions.
The taper ratio and spring constants have a greater influence
on the higher-mode natural frequencies; the nonuniform
pretwist has a greater effect on the natural frequencies than
uniform pretwist. A dynamic stiffness matrix was developed
and used by Banerjee [12] to study the free vibration of a
twisted Timoshenko beam. The effects of shear deformation and
rotary inertia on the natural frequencies of a twisted beam
are same as those of the corresponding straight beam. Based
on coupled displacement fields, a new finite element model
was developed and used by Yardimoglu and Yildirim [13] to
determine the natural frequencies of pre-twisted rectangular
Timoshenko beams. The authors indicated that the new
pre-twisted Timoshenko beam element possesses good conver-
gence characteristics. Above studies were concentrated mainly on
the free vibration characteristics of non-rotating pre-twisted
beam structures.

The dynamic behavior of rotating beams about a longitudinal
or transverse axis had been investigated extensively related to the

vibration of shafts, turbine blades and drill bits. The influence of
the rotational speed on natural frequencies and stability of
untwisted beams spinning about the longitudinal axis has been
studied in [14–20]. An analytical method was presented by Bauer
[14] to investigate the free vibration of spinning Euler straight
beams with various end conditions. The natural frequencies either
decrease or increase linearly as the spinning speed is increased.
Dynamic stability of spinning Euler beams of unsymmetrical
cross-section with distinct end conditions was dealt with by Lee
[15]. The spinning beams are found to have distinct stable and
unstable spinning speed regimes separated by critical spinning
speeds. The natural bending frequency of a spinning cylindrical
shaft was investigated by Behzad and Bastami [16]. Numerical
results showed that the axial force produced by shaft rotation
significantly affects the natural frequency of long shafts at high
spinning speed. The dynamic stiffness method was used by
Banerjee and Su [17] to analyze the free vibration of spinning
Euler beams with doubly symmetric cross section. The natural
frequencies of spinning beams with circular and rectangular
cross-sections were obtained by using the Wittrick–Williams
algorithm. The frequency equations and critical speeds of
spinning straight circular Timoshenko beams were obtained by
Eshleman and Eubanks [18]. The shear deformation effect, rotary
inertia and gyroscopic moment were considered. Finite element
methods were presented by Nelson [19], and Gmur and Rodrigues

Nomenclature

A cross-sectional area
b width of the beam
C global Coriolis matrix
C(e) element Coriolis matrix
C Coriolis coefficient matrix
d displacement matrix in frame xZz

d(e) displacement function of the beam
E Young’s modulus
Fz axial load

F¼�KF/Fz global stiffness matrix due to unit axial force

F eð Þ
¼ �KðeÞF =Fz element stiffness matrix due to unit axial force

G shear modulus
h thickness of the beam
IXX, IYY, IXY area moments and product of inertia in frame XYZ

Ix, IZ principal area moments of inertia in frame xZz

JXX, JYY, JXY mass moments and product of inertia per unit
length in frame XYZ

Jx, JZ principal mass moments of inertia per unit length in
frame xZz

K global stiffness matrix

K1,K2,K3,K4 stiffness coefficient matrices due to the bending
and shear effects

KB global stiffness matrix due to the bending and shear
effects

K eÞð
B element stiffness matrix due to the bending and shear

effects
KF global stiffness matrix due to axial force

KðeÞF element stiffness matrix due to axial force

KO global stiffness matrix due to spinning speed

K ðeÞO element stiffness matrix due to spinning speed

KO stiffness coefficient matrix due to spinning speed
L beam length
Le beam element length
m beam mass per unit length

M global inertia matrix
M(e) element inertia matrix
M inertia coefficient matrix
N transformation matrix between displacement func-

tion and nodal displacements
N1, N2 shape functions of linear beam element
Pcr buckling load
p FzL

2/EI, axial load parameter
pcr PcrL

2/EIx, buckling load parameter
p global displacement matrix
p(e) element displacement matrix
q constant vector
r2 I/AL2, rotary inertia parameter
s2 Er2/Gk, shear deformation parameter
T kinetic energy
uX, uY total transverse displacements in XYZ frame
ux, uZ transverse displacements in xZz frame
ux1, uZ1, ux2, uZ2 nodal transverse displacements in xZz frame
V potential energy
W work produced by the axial load
z axial coordinate
k shear correction factor
r density of the beam
l (rAo2L4/EIx)

1/4, bending frequency parameter
o natural frequency
o o(rAL4/(EIxEIZ)1/2)1/2, dimensionless natural fre-

quency
oEU first bending frequency of the untwisted Euler–

Bernoulli beam
O spinning speed of the beam
O O(rAL4/(EIxEIZ)1/2)1/2, dimensionless spinning speed
O* O/oEU, normalized spinning speed
bo twist angle per unit length
f total twist angle
jx, jy angles of rotation in XYZ frame
jx, jZ angles of rotation in xZz frame
jx1, jZ1, jx2, jZ2 nodal angles of rotation in xZz frame
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