
ARTICLE IN PRESS

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (2017) 1–10

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Reduced graphene oxide as an efficient support for CdS-MoS₂ heterostructures for enhanced photocatalytic H₂ evolution

Monaam Ben Ali ^{a,*}, Wan-Kuen Jo ^b, Habib Elhouichet ^a, Rabah Boukherroub ^c

^a Département de Physique, Faculté des Sciences de Tunis, Université Tunis-El Manar 2092, Tunisia

^b Department of Environmental Engineering, Kyungpook National University, Daegu 702-701, South Korea

^c Univ. Lille1, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France

ARTICLE INFO

Article history: Received 24 February 2017 Received in revised form 30 May 2017 Accepted 31 May 2017 Available online xxx

Keywords: CdS-rGO-MoS₂ composite Hydrothermal Interfacial adhesion H₂ evolution Visible light

ABSTRACT

Cadmium sulphide nanorods-reduced graphene oxide-molybdenum sulphide(CdS-rGO-MoS₂) composites were successfully synthesized using hydrothermal process for enhancing the interfacial contact between CdS nanorods and MoS₂ layer. The good contact between CdS and MoS_2 is important for improving the photocatalytic hydrogen (H₂) evolution. The morphological and structural studies showed the production of highly pure CdS phase with nanorod-like structure dispersed on rGO-MoS₂ layer. X-ray photoelectron spectroscopy (XPS) and Raman results confirmed the reduction of graphene oxide (GO) into reduced graphene oxide (rGO). The higher photocurrent density of CdS-rGO-MoS₂ composites compared to CdS/MoS₂ and the fluorescence quenching observed for this composite provided some evidence for an inhibition of electron-hole recombination, which leads to a longer life time of the photogenerated carriers. Fast electron transfer can occur from CdS nanorods by the bidimensionnel rGO area to MoS₂ layer due to the intimate interfacial contact. Composite CdS-rGO-MoS₂ with 20 wt% rGO was found to be the most effective photocatalyst for H_2 evolution (7.1 mmol $h^{-1}g^{-1}$). The good photocatalytic performance arose from the positive synergistic effect between CdS, rGO and MoS₂ elements. © 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Photocatalytic H_2 production using non noble metals and earth-abundant elements (metal oxides, sulfides ...) has received much attention as a green, economical, and promising way to convert solar energy into preservable H_2 [1–3]. Thus, the development of efficient visible-light-driven photocatalysts is of great importance, because of their useful absorption of the solar spectrum. CdS as *n*-type semiconductor with a narrow band gap (2.4 eV) has been applied for visible light H_2 evolution due to its suitable conduction band gap edge for H_2 evolution reaction [4,5]. However, for practical applications, CdS is still limited by the high photogenerated carriers recombination, poor stability, and its photocorrosion [6]. Alternatively, finding novel, environmental-friendly electrocatalysts with CdS-based substrate has proven to be successful way that could hinder the charge carrier recombination, which greatly improves the catalyst activity [7–9]. TiO₂/CdS has been reported as a promising candidate

* Corresponding author.

E-mail address: monaambenali@yahoo.fr (M. Ben Ali).

http://dx.doi.org/10.1016/j.ijhydene.2017.05.225

0360-3199/© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Ben Ali M, et al., Reduced graphene oxide as an efficient support for CdS-MoS₂ heterostructures for enhanced photocatalytic H₂ evolution, International Journal of Hydrogen Energy (2017), http://dx.doi.org/10.1016/j.ijhydene.2017.05.225

for efficient H_2 evolution [10,11]. Similarly, it has been demonstrated that hybridization of CdS with carbon spheres [12], BiVO₄ nanowires [13,14], MoS₂ [15–22], and MoS₂/TiO₂ nanofibers [23] allowed to enhance the visible light H_2 evolution and reduce the recombination of photogenerated carriers. Loading CdS on reduced graphene oxide (rGO) has been regarded as an effective and feasible way for improving the photocatalytic activity [24–26]. In this line, Hong et al. [26] have demonstrated the good performance of rGO loading on CdS for photocatalytic H_2 evolution.

For instance, the photocatalytic H_2 evolution using CdS-rGO-MoS₂ composites has been described only in a few reports [27–30]. For example, MoS₂ photodeposited onto rGO/CdS was evaluated for synergistic photocatalytic hydrogen generation [29]. It was found that under synergistic condition, the photocatalytic hydrogen evolution rate was 4.3 times higher than that under antisynergistic condition. Similarly, Chang et al. [31] showed the highest photocatalytic activity of MoS₂/graphene-CdS.Yang et al. [27] reported on the influence of MoS₂ cocatalyst on the photocorrosion and photoactivity of CdS combined with graphene. It was found that the photocatalytic activity of tiny MoS₂was better than stacked layer structure of MoS₂ [27]. This result was attributed to the ability of tiny MoS₂ to reduce the photocorrosion and increase the active sites of CdS on the graphene surface.

Although the above results clearly emphasized that the good contact between CdS and MoS_2was necessary for improving the photocatalytic H_2 evolution, a number of researchers have focused on the design of CdS-rGO in one step and then adding MoS_2 using different approaches (photodeposition or hydrothermal ...) to prepare CdS-rGO-MoS₂ nanohybrid. Little attention has been paid to reduce GO on CdS nanorods and layer of MoS_2 in one step.

Herein, to improve the photocatalytic performance of CdS/ MoS_2 heterostructures, we report a one pot facile hydrothermal method to prepare CdS nanorods/rGO/MoS₂ nanocomposites with different GO contents. The application of CdS/rGO/MoS₂ nanohybrids for photocatalytic H₂ evolution in water via visible-light-treatment showed enhanced photocatalytic performance compared to the CdS/MoS₂ solely.

Experimental

Reagents

Cadmium acetate dihydrate (Cd(Ac)₂·2H₂O), thiourea (NH₂CSNH₂), molybdate dihydrate (Na₂MoO₄·2H₂O), hydrochloric acid (HCl), and graphite powder (<20 μ m)were of analytical grade. All reagents and products used for cleaning, synthesis and analyses were purchased from Sigma-Aldrich and utilized as-received. Graphene oxide (GO) used in this work was prepared using a modified Hummers' method [32].

Synthesis of MoS₂

Typically, 0.36 g of sodium molybdate dihydrate (Na₂MoO₄·2H₂O) was dissolved in 30 cm³ of ultrapure water. Secondly, 0.47 g of aqueous thiourea (NH₂CSNH₂) soultion was

added to the above soultion, mixed together and sonicated for 30 min. Then, the pH of the solution was adjusted to 4 by addition of HCl (0.1 M). The solution turned from colorless into yellow, and then transferred into a 120 cm³Teflon-lined stainless steel autoclave which was heated at 200 °C for 24 h. The resultant powder was cleaned using ultrapure water and dehydrated overnight at 80 °C.

Synthesis of CdS-rGO-MoS₂

1 mmol of $Cd(Ac)_2 \cdot 2H_2O$ was dissolved in 30 cm³ultrapure water. Under continuous stirring, freshly prepared NH_2CSNH_2 solution (1 mmol) was added dropwise to $Cd(Ac)_2 \cdot 2H_2O$ at room temperature to form a transparent solution. Then, sonicated MoS_2 sheets/graphene oxide(MoS_2/GO) aqueous solution with 1:2 wt% ratio was added to the above mixture and stirred for 30 min. The resulting solution was placed into 120 cm³Teflon-lined stainless steel autoclave and heated at 200 °C for 24 h. The formed material was cleaned with ultrapure water 5 times and dried overnight at 80 °C. CdS- MoS_2 was synthesized by a similar method without adding GO in the solution.

Physicochemical analyses

X-ray diffraction patterns were recorded using an X'pert Pro Xray diffractometer (Rigaku D/max-2500). Transmission electron microscopy (TEM, Hitachi H-7600-FE-TEM) imaging was obtained by utilising a Gatan SS CCD camera, the bright-field images were acquired by a Digital Micrograph software. Scanning electron microscopy (SEM, Hitachi S-4300-FE-SEM, secondary electron (SE) mode) was used to analyze the morphology of the nanostructures. Micro-Raman spectroscopy was performed using a visible Labram HR spectrometer (Horiba Jobin-Yvon Raman spectrometer)under the excitation of 532 nm. Absorption spectra were obtained using a UV-vis, Varian CARY 5G spectrophotometer. Fluorescence measurements were acquired in the spectral range of 500-600 nm under the excitation wavelength of 325 nm. Transient photocurrent measurements were carried out in 0.1 M aqueous Na₂SO₄ solution placed into 120 mL reactor and under irradiation of 300 W Xe lamp (100 mW/cm²); the lamp was connected to a UV and IR filter.

Electrochemical impedance spectroscopy (EIS) experiments were performed at an applied potential of 0.2 V. For this, a 50 μ L aliquot of a (0.1 M KCl + 5 mM [Fe(CN)₆]^{4/3-}) solution was casted on the electrode surface then the frequency was swept from 100 MHz to 0.1 Hz. All the EIS data are presented as Nyquist plots (i.e., the reciprocal of the real component of the impedance plotted against the imaginary one).

Catalytic activity measurements

The photocatalytic activity of CdS-rGO-MoS₂ composites for hydrogen evolution was performed in water solution. The photocatalysis experiments were carried out in a 120 mL pyrex-glass reactor molded with a quartz disc. A 300 W Xe lamp(100 mW/cm²) attached to a UV and IR filters was used for the irradiation.

Please cite this article in press as: Ben Ali M, et al., Reduced graphene oxide as an efficient support for CdS-MoS₂ heterostructures for enhanced photocatalytic H₂ evolution, International Journal of Hydrogen Energy (2017), http://dx.doi.org/10.1016/j.ijhydene.2017.05.225

Download English Version:

https://daneshyari.com/en/article/5146408

Download Persian Version:

https://daneshyari.com/article/5146408

Daneshyari.com