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a b s t r a c t

An alternative alpha finite element method ðAaFEMÞ coupled with a discrete shear gap technique for

triangular elements is presented to significantly improve the accuracy of the standard triangular finite

elements for static, free vibration and buckling analyses of Mindlin–Reissner plates. In the AaFEM, the

piecewise constant strain field of linear triangular elements is enhanced by additional strain terms with

an adjustable parameter a which results in an effectively softer stiffness formulation compared to the

linear triangular element. To avoid the transverse shear locking, the discrete shear gap technique (DSG)

is utilized and a novel triangular element, the Aa�DSG3 is obtained. Several numerical examples show

that the Aa�DSG3 achieves high reliability compared to other existing elements in the literature.

Through selection of a, under or over estimation of the strain energy can be achieved.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

The finite element analysis of plate structures plays an
important role in engineering applications because the plate is
one of the most widely used structural components. In practical
applications, lower order Mindlin–Reissner plate elements are
preferred due to their simplicity and efficiency. However, these
low-order plate elements in the limit of thin plates often suffer
from the shear locking phenomenon which has the root of
incorrect transverse forces under bending.

Therefore, many formulations have been developed to over-
come the shear locking phenomenon and to increase the accuracy
and stability of numerical methods such as mixed formulation/
hybrid elements [1–4], the enhanced assumed strain (EAS)
method [5,6] and the assumed natural strain (ANS) method [7,8].
Recently, the discrete shear gap (DSG) method [9] which can
avoid shear locking was proposed. The DSG is similar to the ANS
methods in the aspect of modifying the course of certain strains
within the element, but different in that it does not employ
collocation points, which makes the DSG method independent of
the order and shape of the element.

The smoothed FEM (SFEM) [10] based on strain smoothing is
ideally suited to extremely distorted meshes. Another advantage

of the SFEM is that derivatives of the shape functions are not
required, leading to lower computational cost because of the
absence of an isoparametric mapping. The SFEM has also been
extended to general n-sided polygonal elements (nSFEM) [11],
dynamic analysis [12–14], plate and shell analysis [15–19] and
coupled to partition of unity enrichment [20–25]. The latter paper
also provides a review of strain smoothing in FEM. A general
framework for this strain smoothing technique in FEM was
proposed in [26]. Based on the idea of the node-based smoothed
point interpolation method (NS-PIM) and the SFEM, a node-based
smoothed finite element method (NS-FEM)[27] for 2D solid
mechanics problems has been developed.

Recently, Liu et al. [28,29] have proposed a superconvergent
alpha finite element method (S a FEM) using triangular meshes.
Nguyen-Thanh et al. [30] extended the AaFEM to free and forced
vibration analyses of solid 2D mechanics problems. In the AaFEM,
an assumed strain field was formulated by adding the averaged
nodal strains with an adjustable factor a to the compatible
strains. The new Galerkin-like weak form, as simple as the
Galerkin weak form, was then obtained for this constructed strain
field. It was proven theoretically and numerically that the AaFEM
is always more accurate than the original FEM-T3 as well as the
FEM-Q4 when the same sets of nodes are used.

In this paper, we further extend the AaFEM to static, free
vibration and buckling analyses of Mindlin–Reissner plates using
triangular elements only. In the AaFEM for plates, the bending,
shearing and geometrical stiffness matrices of the standard FEM
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formulation are enhanced by additional strain terms with an
adjustable parameter a which results in an effectively softer
stiffness formulation compared to the linear triangular element.
Transverse shear locking can be avoided through the discrete
shear gap (DSG) method. Several numerical examples illustrate
the high performance of the Aa�DSG3 formulation compared to
other elements from the literature.

The paper is arranged as follows. The next section describes
the discrete governing equations. In Section 3, an assumed strain
field based on linear triangular elements (T3) is introduced. Next,
some theoretical properties of the AaFEM is presented. Section 5
presents and discusses numerical results. We close our paper with
some concluding remarks and ideas for future work.

2. Discrete governing equations

Let O be the domain in R2 occupied by the mid-plane of the
plate and w and b¼ ðbx,byÞ

T denote the transverse displacement
and the rotations in the x–z and y–z planes, see Fig. 1, respec-
tively. Assuming that the material is homogeneous and isotropic
with Young’s modulus E and Poisson’s ratio n, the governing
differential equations of the Mindlin–Reissner plate are given by

�divDbebðbÞ�ltesðbÞ ¼ 0 in O ð1Þ

�ltdivðesÞ ¼ p in O ð2Þ

w¼w,b¼ b on G¼ @O ð3Þ

where t is the plate thickness, p ¼ p(x,y) is the transverse loading
per unit area, l¼ kE=2ð1þnÞ, k¼5/6 is the shear correction factor
and Db (Eq. (11)) is the tensor of bending moduli. The bending eb

and shear strains es are defined as

eb ¼ Ldb, es ¼rwþb ð4Þ

wherer¼ ð@=@x,@=@yÞ is the gradient vector and Ld is a differential
operator matrix defined by

LT
d ¼

@=@x 0 @=@y

0 @=@y @=@x

" #
ð5Þ

The weak form of the static equilibrium equations in Eq. (3) is as
follows:Z
O
ðdebÞ

T Dbeb dOþ
Z
O
ðdesÞ

T Dses dO¼
Z
O
duT p dO ð6Þ

where the displacement field is given by u¼ ½w,bx,bx�
T , and the

transverse load is redefined by p ¼ ½p,0,0�T .
For the free vibration analysis of a Mindlin–Reissner plate

model, a weak form may be derived from the dynamic form of the
principle of virtual work under the assumptions of first order

shear-deformation plate theory.

Z
O
ðdebÞ

T Dbeb dOþ
Z
O
ðdesÞ

T Dses dOþ
Z
O
duT m €u dO¼ 0 ð7Þ

In the case of in-plane buckling analyses and assuming pre-
buckling stresses r̂0, non-linear strains appear and the weak form
can be reformulated as [31]

Z
O
ðdebÞ

T Dbeb dOþ
Z
O
ðdesÞ

T Dses dOþt

Z
O
r

Tdwr̂0rw dO

þ
t3

12

Z
O
½rTdbx r

Tdby�
r̂0 0

0 r̂0

" #
rbx

rby

" #
dO¼ 0 ð8Þ

Eq. (8) can be rewritten asZ
O
ðdebÞ

T Dbeb dOþ
Z
O
ðdesÞ

T Dses dOþ
Z
O
ðdegÞ

Tseg dO¼ 0 ð9Þ

where

e¼
eb

es

" #
¼

bx,x

by,y

bx,yþby,x

bxþw,x

byþw,y

2
6666664

3
7777775

, eg ¼

wx 0 0

wy 0 0

0 bx,x 0

0 bx,y 0

0 0 by,x

0 0 by,y

2
6666666664

3
7777777775

,

s¼

tr̂0 0 0

0 t3

12r̂0 0

0 0 t3

12r̂0

2
664

3
775 ð10Þ

r̂0 ¼
r0

x r0
xy

r0
xy r0

y

2
4

3
5, Db

¼
Et3

12ð1�n2Þ

1 n 0

n 1 0

0 0 1�n
2

2
64

3
75,

Ds
¼ k

Et

2ð1þuÞ
1 0

0 1

� �
ð11Þ

Let us assume that the bounded domain O is discretized into nel

finite elements such that O¼
Snel

e ¼ 1 O
e and OiaOja|, ia j. The

finite element solution uh of a displacement model for the
Mindlin–Reissner plate is then expressed as

uh ¼
Xnp

I ¼ 1

NIðxÞ 0 0

0 NIðxÞ 0

0 0 NIðxÞ

2
64

3
75dI ð12Þ

where np is the total number of nodes NI(x), dI ¼ ½wI yxI yyI�
T are

shape functions and the nodal degrees of freedom of uh associated
to node I, respectively.

Fig. 1. Geometry of a typical Mindlin–Reissner plate.
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