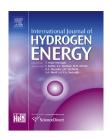
ARTICLE IN PRESS


INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (2016) 1-8

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Investigations on AB_3 -, A_2B_7 - and A_5B_{19} -type La-Y-Ni system hydrogen storage alloys

Huizhong Yan a,b,c,*, Wei Xiong a,b, Li Wang a,b, Baoquan Li a,b, Jin Li a,b, Xin Zhao a,b

ARTICLE INFO

Article history: Received 23 July 2016 Received in revised form 4 September 2016 Accepted 7 September 2016 Available online xxx

Keywords:

La—Y—Ni hydrogen storage alloy Hydride Hydrogenation/dehydrogenation Electrochemical properties Ni-MH battery

ABSTRACT

The structure and properties of new La-Y-Ni system alloys with high hydrogen-storing capacity were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), solid-H2 reactions (P-C-I curves) and electrochemical measurements. The LaY2- $Ni_{8.2}Mn_{0.5}Al_{0.3}$ (AB₃-type), LaY₂Ni_{9.7}Mn_{0.5}Al_{0.3} (A₂B₇-type) and LaY₂Ni_{10.6}Mn_{0.5}Al_{0.3} (A₅B₁₉-type) type) hydrogen storage alloys were prepared with the induction-melting rapid-quenching method and annealed at 1148 K for 16 h. The La-Y-Ni-Mn-Al alloys were also compared with commercial AB5-type hydrogen storage alloy with high capacity. Similarly to La-Mg-Ni system hydrogen storage alloy, La-Y-Ni system alloys are multiphase structures and Y element in the La-Y-Ni alloys avoid or delay the hydrogen-induced amorphous (HIA) of the alloys in the hydrogenation/dehydrogenization process. The hydrogen storage capacities of the A₂B₇- and A₅B₁₉-type alloys at 313 K are 1.48 wt.% and 1.45 wt.%, respectively, which are larger than that of the AB5-type alloy (1.38 wt.%). The maximum discharge capacities of the $A_2B_{7^-}$ and A_5B_{19} -type alloy electrodes at 298 K are 385.7 mAh g^{-1} and 362.1 mAh g^{-1} , respectively, which are larger than that of the AB₅-type alloy (356.1 mAh g^{-1}). The maximum discharge capacity of the A_2B_7 -type alloy exceeds the theoretical capacity (372 mAh g^{-1}) of the AB₅-type alloy. The A₂B₇- and A₅B₁₉-type alloy electrodes have better cycling ability than the AB₅-type alloy.

© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Hydrogen storage is one of the key technologies for hydrogen energy appliance which provides an ideal solution for the dwindling global energy crisis and ever-increasing environmental pollution [1]. Rare earth hydrogen storage alloys are the most mature hydrogen storage products, which are mainly used for the negative materials of nickel-metal

hydride (Ni-MH) batteries [2,3] and gas-phase hydrogen storage devices [4,5]. AB_5 -type $LaNi_5$ -based alloys are currently the main commercial hydrogen storage materials. However, the theoretically electrochemical capacity (372 mAh g $^{-1}$) or maximal hydrogen storage amount (160 cm 3 g $^{-1}$ or 1.43 wt.%) after optimization of this material [6] often hardly satisfies the required hydrogen storage capacity because of its restraining intrinsic structure (CaCu $_5$ -type). RE-Mg-Ni (RE = Rare Metals) system $AB_{3-3.8}$ -type metal hydride alloys are of special

http://dx.doi.org/10.1016/j.ijhydene.2016.09.049

0360-3199/© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Yan H, et al., Investigations on AB₃-, A_2B_7 - and A_5B_{19} -type La-Y-Ni system hydrogen storage alloys, International Journal of Hydrogen Energy (2016), http://dx.doi.org/10.1016/j.ijhydene.2016.09.049

^a Baotou Research Institute of Rare Earths, Baotou 014030, PR China

^b National Engineering Research Center of Rare Earth Metallurgy and Functional Materials, Baotou 014030, PR China

^c Tianjin Baogang Research Institute of Rare Earths Co., Ltd, Tianjin 300300, PR China

^{*} Corresponding author. Baotou Research Institute of Rare Earths, Baotou 014030, PR China. E-mail address: yhzmail@126.com (H. Yan).

concern because of the higher discharge capacity (~400 mAh $\rm g^{-1}$), and a series of significant developments in the study of this material has been made in the past few years [7–12].

RE-Mg-Ni hydrogen storage alloys have been widely used as negative electrode active materials for Ni-MH batteries as substitutes for conventional AB5-type alloys [10-12]. The active Mg element is one of the main compositions in RE-Mg-Ni system alloys. The chemical composition of RE-Mg-Ni system alloys is difficult to control in the high-temperature melting manufacturing process because of the high vapor pressure of Mg. Ultra-fine magnesium powder, which is formed by Mg volatilization, becomes a safety hazard. Thus, new manufacturing techniques are investigated, such as smelting protection with helium gas [7,12,13], various sintering technologies [14,15], high-powered ball-grinding technology [16] and so on. However, the application of these techniques has either a high cost or a complicated process. So, the research and development of Mg-free hydrogen storage alloys with high hydrogen-storing capacity is of great significance.

Combining LaNi5 and YNi2 binary compounds with hydrogen storage properties, Baddour-Hadjean et al. [17] studied the La-Y-Ni ternary alloy, which is equivalent to an overall substitution of the Mg element in the La-Mg-Ni system alloy by a rare earth Y element. By studying AB3-type $La_{1-x}Ce_xY_2Ni_9$ (0 < x < 1) allows, it is found that the LaY_2Ni_9 alloy is a PuNi3-type structure and forms LaY2Ni9H12 after hydrogenation, which excels the hydrogen capacity of LaMg₂Ni₉ alloy under identical conditions. However, the maximum discharge capacity of LaY2Ni9 alloy electrodes is only 265 mAh g⁻¹. Belgacem et al. [18] also tested the electrochemical properties of LaY2Ni9 alloy electrode. The maximum discharge capacity of the alloy electrodes is 258 mAh g^{-1} within five cycles, and 54% of the capacity is maintained after 100 cycles, which is far from meeting the needs of the application. In our previous work [19-21], the reversible hydrogen storage performance of AB3-, A2B7- and A_5B_{19} -type La-Y-Ni system alloys is noticeably improved by adjusting the alloy composition using the element substitution method. Importantly, La-Y-Ni system alloys can be directly prepared using the high-temperature melting method, which solves the preparation problems for Mg-based hydrogen storage alloys.

The structure and properties of the representative AB₃-, A_2B_7 - and A_5B_{19} -type La–Y–Ni–Mn–Al hydrogen storage alloys were systematically investigated in this paper and compared with commercial AB₅-type hydrogen storage alloy with high capacity.

Experimental

The chemical compositions of the investigated La–Y–Ni–Mn–Al alloys are LaY $_2$ Ni $_{8.2}$ Mn $_{0.5}$ Al $_{0.3}$ (AB $_3$ -type), LaY $_2$ Ni $_{9.7}$ M-n $_{0.5}$ Al $_{0.3}$ (A $_2$ B $_7$ -type) and LaY $_2$ Ni $_{10.6}$ Mn $_{0.5}$ Al $_{0.3}$ (A $_5$ B $_{19}$ -type). These alloys were prepared in a 0.05 MPa argon atmosphere using a vacuum induction-quenching furnace with a rotating copper wheel. In this work, the linear velocity of the copper wheel was 4.33 m s $^{-1}$. The purities of the component metals

were at least 99 wt.%. The prepared alloy flakes were annealed in vacuum of 10^{-2} Pa at 1148 K for 16 h. The annealed alloy flakes and commercial AB $_5$ -type (LaCe)Ni $_{3.8}$ Co $_{0.7}$ Mn $_{0.4}$ Al $_{0.2}$ hydrogen storage alloy were mechanically pulverized into powder particles of 38–74 μm in size for the electrochemical measurements.

The phases of the alloy powders were characterized by X-ray diffraction (XRD) using a Philips-PW 1700 X powder diffractometer with Cu K α radiation at 40 kV, 200 mA in the range from 0° to 80° with 0.02° min⁻¹, and the diffraction patterns were analyzed with a Rietveld refinement (using the software MAUD). The morphologies of the alloys were examined by HITACHI S-3400N scanning electron microscope (SEM) linked with an energy dispersive X-ray spectrometer (EDS).

Pressure-composition isotherms for the $\rm H_2$ absorption/desorption reactions were determined over the pressure range of 10^{-3} MPa to 2.0 MPa in a Sieverts testing device. The alloy flakes were mechanically broken into small particles of 74 µm-1.2 mm in size before testing. Alloy particles with a mass of approximately 5 g were placed in the reaction chamber, evacuated for 60 min at 343 K and then allowed to react with hydrogen gas (99.999% purity) under a pressure of 2 MPa. The chamber was then slowly cooled to room temperature and held at that temperature for 30 min. De-hydriding was performed by heating the chamber to 343 K and evacuating it for 60 min until the hydrogen pressure was below 10^{-3} MPa. Five hydriding/de-hydriding cycles were performed to ensure that the alloys were fully activated. Next, the P-C isotherms were measured at 298 K, 313 K, 333 K and 343 K.

MH electrodes were prepared by mixing 0.1 g alloy powder with 0.4 g carbonyl nickel powder and then cold-pressed into pellets with 15 mm in diameter under a pressure of 16 MPa. This pellet was then placed between two Ni gauze layers, and the edges were tightly spot-welded to maintain good electrochemical contact between the pellet and the Ni gauze. A Ni lead wire was then attached to the Ni gauze by spot-welding to prepare the hydrogen storage alloy electrode (MH electrode). Electrochemical measurements were performed at 298 K in a half-cell consisting of a prepared MH electrode and a sintered Ni(OH)2/NiOOH counter electrode with an excess capacity immersed in 6 mol L-1 KOH electrolyte. The discharge capacity and cycle stability were measured by galvanostatic method as follows: each electrode was charged at 70 mA g⁻¹ for 6 h, which was followed by a 5-min break, and then was subsequently discharged at 70 mA g⁻¹ to the cut-off potential of 1.0 V versus the counter electrode. All tests were measured at room temperature (298 K).

Results and discussion

Phase structure

Fig. 1 shows the refined analysis of XRD patterns for the $LaY_2Ni_{8.2}Mn_{0.5}Al_{0.3}$ (AB_3 -type), $LaY_2Ni_{9.7}Mn_{0.5}Al_{0.3}$ (A_2B_7 -type) and $LaY_2Ni_{10.6}Mn_{0.5}Al_{0.3}$ (A_5B_{19} -type) alloys, and the results are listed in Table 1. The alloys have a multiphase microstructure. The AB_3 -type alloy consists of LaY_2Ni_9 -type phase, Ce_2Ni_7 -type phase and a notably small quantity of $LaNi_5$ -type phase. The A_2B_7 -type alloy consists of Ce_2Ni_7 -type phase and Ce_2Ni_7 -type

Download English Version:

https://daneshyari.com/en/article/5146524

Download Persian Version:

https://daneshyari.com/article/5146524

<u>Daneshyari.com</u>