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Mesh adaptation methods can improve the efficiency and accuracy of solutions to computational modeling
problems. In many applications involving quadrilateral and hexahedral meshes, local modifications which
maintain the original element type are desired. For triangle and tetrahedral meshes, effective refinement
and coarsening methods that satisfy these criteria are available. Refinement methods for quadrilateral and
hexahedral meshes are also available. However, due to the added complexity of maintaining and satisfy-
ing constraints in quadrilateral and hexahedral mesh topology, little research has occurred in the area of
coarsening or simplification. This paper presents methods to locally coarsen conforming all-quadrilateral
and all-hexahedral meshes. The methods presented provide coarsening while maintaining conforming
all-quadrilateral and all-hexahedral meshes. Additionally, the coarsening is not dependent on reversing a
previous refinement. Several examples showing localized coarsening are provided.

Published by Elsevier B.V.

1. Introduction

Mesh adaptation methods can improve the efficiency and accu-
racy of solutions to computational modeling problems. For a given
model, there are usually regions that require greater mesh density
than others to improve solution efficiency, reduce error or uncer-
tainty in high gradient regions, or more accurately represent the
model geometry. Regionswhere high accuracy is not critical orwhere
gradients are low can generally be modeled with lower mesh den-
sity. Since the computational time required in a finite element anal-
ysis is directly related to the number of elements in the model being
analyzed, it is advantageous to produce a mesh that has as few ele-
ments as possible. Therefore, in an ideal analysis, each region in the
model should have enough elements to produce a good solution, but
no more.

Due to the complexity inherent in many mesh generation algo-
rithms, it is often difficult to create an initial mesh that optimizes
both accuracy and efficiency. Although some control over mesh den-
sity is possible, an initial mesh will almost always contain regions
that have too few elements, regions that have too many elements, or
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both. In addition, some applications require mesh density to evolve
throughout an analysis as areas of high and low activity change with
time [1–4]. For these reasons, much research has been devoted to
the development of mesh modification tools that make it possible
to adjust element density in specific regions either before or during
analysis.

Mesh adaptation consists of both refinement and coarsening. Re-
finement is the process of adding elements to a mesh while coars-
ening is the process of removing elements from a mesh. By refining
areas that have too few elements and coarsening areas that have
too many elements, a more accurate and efficient analysis can be
performed. Mesh adaptation methods are also useful in visual appli-
cations where objects far from view can be highly simplified while
objects closer to view should have more detail. Because computer vi-
sualizations are typically embedded on a mesh, efficient algorithms
for mesh adaptation are valuable for improving memory perfor-
mance for views consisting of large numbers of mesh elements.

To date, most of the research in mesh adaptation has focused
on refinement techniques for increasing local element density [5,6].
Complementary algorithms for decreasing local element density by
element removal (i.e. coarsening) could be a powerful companion
tool to refinement algorithms, potentially allowing more flexible
mesh adaptation. For example, given a uniform mesh, the mesh
density in an area of interest may be increased by established re-
finement techniques and decreased away from the areas of interest
using a coarsening technique. Rather than remeshing the model, the
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base mesh may be modified using refinement and coarsening tools;
this would permit increased resolution and accuracy in the results
while maintaining a similar computation time for the entire model.
Furthermore, a given model may require adaptation in different lo-
cations depending on different load cases, adaptation by both re-
finement and coarsening from a single base mesh may allow more
efficient and robust generation of meshes appropriate for varied cir-
cumstances. In spite of its potential benefits, coarsening is an area
of research which has received limited attention.

In this paper we describe algorithms for performing coarsening
on all-quadrilateral and all-hexahedral meshes while maintaining
conforming mesh topology through the coarsening process to pre-
vent the creation of non-quadrilateral or non-hexahedral elements.
In the following sections we will discuss related work in mesh coars-
ening or simplification, outline our algorithms and demonstrate the
algorithms on several examples.

2. Background

Mesh adaptation is a field which has received extensive study
among both computational mechanics and computer graphics re-
searchers. Generally these two fields have not collaborated due to
the many additional restrictions associated with computational me-
chanics but unnecessary in computer graphics. One example of these
additional restrictions in computational mechanics is that a mesh
must accurately represent the model geometry by ensuring that the
nodes representing a curve or surface of the model do not move off
the geometry, whereas in graphics a sufficiently low level of detail
might justify combining surfaces and/or curves.

To effectively achieve the objectives of mesh adaptation, a truly
general quadrilateral/hexahedral coarsening algorithm should:

1. Preserve a conforming all-hexahedral or all-quadrilateral mesh.
2. Restrict mesh topology and density changes to defined regions.
3. Work on both structured and unstructured meshes.
4. Not be limited to only undoing previous refinement.

2.1. Triangle and quadrilateral simplification algorithms

Triangular meshes in computer graphics and computational me-
chanics are common due to the relative simplicity of generating the
meshes from these simplex elements. Triangle meshing algorithms
are well-established and on-going efforts in the research community
continue to improve the quality of these meshes. Triangle mesh sim-
plification algorithms begin with an existing base mesh, consisting
of triangles, and modify the topology to remove triangles, improve
quality and/or geometric integrity. A survey of triangle mesh coars-
ening algorithms is documented by Cignoni et al. [7], highlighting the
major simplification methodologies, including coplanar facet merg-
ing, controlled vertex/edge/face decimation, retiling, energy function
optimization, vertex clustering, wavelet based approaches, and sim-
plification via intermediate hierarchical representation. Additional
surveys that compare smaller sets of algorithms are also given in [8].

One of the foremost algorithms of triangle mesh simplification
was developed by Garland et al. [9]. The approach is fast, reliable,
and is also generally applicable to any polygon mesh. The algorithm
assumes that the mesh is composed entirely of triangles, or can be
broken into a mesh composed of triangles. It is designed to combine
surfaces and curves that are indistinguishable when rendered at a
low level of detail. Hoppe et al. [10], demonstrate mesh adaptation
respecting geometric curves and surfaces in order to preserve sharp
corners and edges in the mesh representation.

While trianglemeshes havewidespread use, quadrilateralmeshes
are sometimes preferred in computational analysis due to some ben-
eficial mathematical properties of the quadrilateral element that can

result in increased solution accuracy with fewer elements than tri-
angle meshes [11]. Unfortunately, despite the wide availability of
triangle mesh adaptation algorithms, most of algorithms developed
for triangle mesh simplification cannot be adapted for use on quadri-
lateral meshes.

A number of efforts have been utilized for quadrilateral coars-
ening of structured meshes. Takeuchi et al. [12], modified the ap-
proach developed by Garland et al. [9], to simplify quadrilateral
meshes; however, the process is designed for full-model simplifica-
tion and may produce degenerate elements (i.e. quadrilaterals which
are inverted or concave). Cheng et al. [13] developed a method of
coarsening a structured, all-quadrilateral mesh specifically for use
on auto-body parts; however, this method has not been adapted for
use in unstructured meshes. Kwak et al. [14] performs simplifica-
tion using remeshing algorithms; however, this global approach can
be slow when only local adaptation is needed. Choi [15] describes
an algorithm which can be used to undo previous refinement on
both quadrilateral and hexahedral meshes; however, the reliance on
knowledge of previous refinement restricts the algorithm from be-
ing used on a base mesh that has not been refined. Nikishkov [16]
developed a quadtree method for mesh adaptation that allows both
refinement and coarsening; however, his method requires the use
of special elements or produces non-conforming elements.

2.2. Hexahedral coarsening

Although hexahedral coarsening has been utilized in some mod-
eling applications, no single algorithm has been developed that sat-
isfies all the criteria listed above. This is, in large part, due to the
topology constraints that exist in a conforming all-hexahedral mesh.
These constraints make it difficult to modify mesh density without
causing topology changes to propagate beyond the boundaries of a
defined region [17,18].

Since current hexahedral coarsening methods are unable to sat-
isfy all the requirements listed above, they have limited application.
For example, to prevent global topology changes, some algorithms
introduce non-conforming or non-hexahedral elements into the
mesh [1,2,19–21]. While this is a valid solution for some types of
analysis, not all finite element solvers can accommodate hanging
nodes or hybrid meshes. Other algorithms maintain a conform-
ing all-hexahedral mesh, but they generally require either global
topology changes beyond the defined coarsening region [18,22,23],
structured mesh topology where predetermined transition tem-
plates can be used [24,22], or prior refinement that can be undone
[2,19,20]. These weaknesses severely limit the effectiveness of these
algorithms on most real-world models.

3. Dual methods

In recent years, a greater understanding of quadrilateral and hex-
ahedral mesh topology has led to the development of many new
quadrilateral and hexahedral mesh operations [25–28]. The algo-
rithms presented in this paper utilize the dual representation of
a quadrilateral/hexahedral mesh. In this section, we discuss dual-
based operations which are useful for modification of quadrilateral
and hexahedral meshes.

3.1. Quadrilateral dual methods

A dual chord is a set of quadrilaterals connected through pairs of
opposite edges that extend through a mesh to connect back at the
original starting edge (on a closed surface) or terminate at the mesh
boundary (for a bounded quadrilateral mesh). In Fig. 1, the dashed
line highlights a single chord of the quadrilateral mesh shown.
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