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A smoothing method specifically designed to treat hybrid meshes is presented in this paper. This method,
based on Riemannian metric comparison, minimizes a cost function constructed from a measure of metric
non-conformity that compares two metrics: the metric that transforms a given element into its reference
element and a specified Riemannian metric that contains the desired target size and shape of each
element. This combination of metrics allows the proposed mesh smoothing method to be cast in a very
general frame, valid for any dimension and type of element. Numerical examples show that the proposed
method generates high quality meshes as measured both in terms of element characteristics and in terms
of orthogonality at the boundary and overall smoothness, when compared to other known methods.
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1. Introduction

In the context of numerical simulations, particularly in compu-
tational fluid dynamics (CFD), the concept of mesh quality is always
an issue. Smoothing is a mesh modification method that can be used
to increase mesh quality in many ways. Most often, simple smooth-
ing algorithms are used after initial mesh generation or topological
modifications to an existing mesh, in order to equidistribute varia-
tions of size or shape globally or locally, see [1,2] for examples.

In this paper, a mesh smoothing method driven by the minimiza-
tion of metric non-conformity is proposed. The presented method,
instead of optimizing size or shape functions, directly compares an
element’s current metric to a desired target metric. These metrics
contain, in a single matrix entity, details on local size and shape.
Since the algorithm is only dependant on a specified metric, it can be
used in different settings such as initial mesh generation, where the
specified metric is constructed from geometric information, or in a
posteriori adaptation, where the metric is computed from a numerical
solution. Assuming that a correctly defined metric is specified, this
paper explains how a mesh smoothing method can be devised to gen-
erate high quality meshes with respect to the desired metric, while
respecting many constraints for the mesh such as constant number
of vertices and constant connectivity between vertices of the mesh.
The main contribution of this paper is to propose a method that is
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applicable to hybrid meshes, which comprise elements of dif-
ferent types, and to show how minimization of metric non-
conformity can be incorporated into a convergent mesh adaptation
algorithm.

The first section of this paper presents some of the works related
to mesh smoothing and discusses why a new smoothing algorithm
is needed for industrial applications, which simultaneously accounts
for both size and shape of the elements. The concepts of Rieman-
nian metrics and non-conformity are explained next, in Section 3.
This paper then goes on to explain the smoothing method used to
optimize the non-conformity of a mesh (Section 4) and presents an
algorithm based on the prototype presented in [3]. Numerical ex-
amples that illustrate the versatility of the method and the quality
of the resulting meshes are presented in the final part of this paper
for different types of meshes, and conclusions are drawn.

2. Mesh optimization by smoothing

Most smoothing methods can be separated into two categories:
methods that optimize size distribution and methods that optimize
element shape.

In the size distribution methods category, the most common type
of smoothing is certainly Laplacian smoothing, where a vertex is
moved to the center of its neighbors. Examples of other size distribu-
tion methods include physical analogies such as the spring analogy
[4,5] and particle potential minimization [6], methods based on the
elliptical Poisson system [7-10] as well as “center of mass” methods
[11,12]. These methods have been used in adaptive environments
using weight functions or concentration functions that allow for
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spacing or size specification. Their main drawback is that they pro-
vide very little control over element shape, since they are only based
on the measure of distance between points. They are usually not
appropriate when orthogonality or other shape properties are de-
sired. Moreover, these methods are subject to geometric tensions.
This means that vertices are attracted in concave corners of the ge-
ometry, and this pulling effect can even result in the mesh folding
outside the geometry, since optimal positioning of nodes is based
on length and is not, by definition, aware of domain boundaries.
This behavior can be controlled using constraints on the optimiza-
tion process to enforce boundaries, or concentration functions to re-
duce tensions. But these processes must often be adjusted somewhat
manually for a given class of geometries. This implies that, as they
are formulated, these optimization processes do not entirely incor-
porate the underlying engineering and computational objectives of
smoothing.

The second category of methods is shape-based optimization.
Some of the best known methods in this category apply complex op-
timization algorithms to reduce a cost function based, for example,
on angular criteria [13,14] or on shape distortion measures such as
those presented in [15-17]. Most often, these smoothing methods
are used as a final step during mesh generation, to regulate shape
variations from an ideal shape, for example, a square for a 2D quadri-
lateral element. The resulting meshes exhibit very smooth shape dis-
tribution. The inherent limitation of these methods lies in the fact
that the definition of a perfect element shape is global. When a ver-
tex is moved, the optimization process tries to satisfy a specific shape
which is the same over the whole domain and is usually isotropic.
These approaches are excellent to correct unsatisfactory shape dis-
tortions in a generated mesh. Local specification of shape can be im-
plemented in these methods in order to also adapt the vertex distri-
bution to complex flow characteristics, which locally exhibit highly
anisotropic features.

In order to generate a better result, two or more smoothing meth-
ods can be combined either by successively applying each one, se-
quentially or iteratively, or by minimizing a single cost function ob-
tained as an arbitrary combination of several simpler functions. How-
ever, this type of combined method results in heuristic approaches
that are application and case dependant and thus not as general as
desired. In the present work, a single cost function is used, rather
than an arbitrary combination of functions, in order to prevent spu-
rious properties in resulting meshes and to eliminate the need for
case specific modifications to the function.

From the previous analysis, it becomes apparent that current
methods lack one of the two kinds of control, either on size or shape,
or combine them in a heuristic manner that does not give intrinsic
control on both properties at the same time. In the present work,
the goal is to unify these controls into a single target specification,
and devise a vertex relocation method capable of satisfying at best
this specification. For example, it could be necessary, in the same
mesh, to specify highly anisotropic elements to resolve a shock near
an airfoil while also specifying, in another region, highly isotropic
elements with great size variations to resolve flow vortices at a trail-
ing edge. In this case, a variation of a shape-based approach might
seem best suited for the shock region, while a size-based approach
would probably yield the best results for the trailing edge region. To
obtain high quality meshes with local control of mesh characteris-
tics, a number of desired properties of the smoothing method have
been identified. The smoothing method should allow the

. simultaneous optimization of both element size and shape;

. specification of variable size and shape targets over the domain;

. minimization of a single cost function;

. smoothing of both structured and unstructured meshes possibly
containing mixed element types;
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5. construction of non-folding meshes without constraining the op-
timization process;

6. ensuring of the continuity between regions of different cell types
(hybrid meshes).

The first three properties can be met using a cost function based on
a Riemannian metric, as the next sections will show. Also, since a
metric-based specification of the target mesh characteristics is inde-
pendent of element type, the use of a cost function based on metric
comparison ensures that the optimization process is independent of
the mesh and element types as well.

Furthermore, the present work aims at developing a general
mesh smoothing method that naturally converges toward non-
folded meshes. Hence a formulation of the smoothing problem is
chosen that lends itself to unconstrained optimization. It is postu-
lated that for the optimization process to naturally result in high
quality meshes without constraints, essentially entails that the
overall process be specifying a correct form of the mesh smooth-
ing problem. Here, a correct form of the smoothing problem refers
to a formulation where element size, element shape, presence of
domain boundaries and fixed mesh connectivity are accounted for
intrinsically.

3. The concepts of metric and non-conformity

The use of a Riemannian metric as a size and shape specifi-
cation map for the adaptation of a mesh is a central concept to
this paper. It has been first introduced in [18] as a way to de-
scribe the size, stretching and orientation of the mesh elements in
a single matrix entity. It has been shown in works such as [19,20]
that the Riemannian metric allows the control of mesh character-
istics through the specification of a single tensor defined on the
domain.

A specified metric .# can be constructed from a posteriori er-
ror estimation or user defined functions as well as geometric prop-
erties. The Riemannian metric is an entity that can be used in any
adaptation process, independent of how it is constructed and what
characteristics the user wants to achieve through the adaptation pro-
cess. The metric field .#; uses the Hessian of a scalar variable, in
the present case velocity magnitude or Mach number, to adapt the
mesh to a solution obtained on an initial mesh (see e.g. [21]). The
Hessian itself is reconstructed using the quadratic method described
and analyzed in [22].

Smoothing using a specified metric involves moving mesh ver-
tices so that each element is as close as possible to the ideal size
and shape, as measured in the space defined by the specified metric.
These ideal elements are the unit side equilateral triangles or the
unit squares in two dimensions and their equivalents in three di-
mensions. Being of the ideal size and shape in the metric will result
in an element being of the specified size, stretching and orientation,
according to the metric.

The quality of a mesh can be measured using the non-conformity
coefficient presented for simplices in [23,24] and extended to non-
simplices in [25]. The central idea is that each element K in the mesh
possesses an actual metric. This metric, denoted as .#, defines the
transformation between the element in its present state and a ref-
erence element. The reference element, as described in the previous
paragraph, is the same element type as element K with unit length
edges. Evaluation of .# is done using finite element transforma-
tions, as described in [25].

The quality of an element is then defined as being optimal when
that actual metric is equal to the specified metric:

My = Ms. (1)
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