ARTICLE IN PRESS

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (2017) I-5

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Enhancement of hydrogen sorption properties of MgH₂ with a MgF₂ catalyst

Jong-Sang Youn^{*a*}, Duy-Thach Phan^{*a*}, Cheol-Min Park^{*b*,**}, Ki-Joon Jeon^{*a*,*}

^a Department of Environmental Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea

^b School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea

ARTICLE INFO

Article history: Received 18 May 2017 Received in revised form 13 June 2017 Accepted 17 June 2017 Available online xxx

Keywords:

Magnesium hydride Additive MgF₂ Hydrogen storage Ball milling Crystallinity Grain growth

ABSTRACT

Effect of a MgF₂ catalyst, prepared by ball-milling, on the hydrogen desorption ability of commercial MgH₂ was investigated. When MgH₂ was catalyzed with a MgF₂ composite, it exhibited good cyclability and sharp faceting, with a small grain size (around 10 nm), which differs from those of pure MgH₂. The addition of the MgF₂ catalyst suggests that the F anion could significantly contribute to the cyclability of Mg particles and aid in the inhibition of MgH₂ grain growth.

© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

The interest in using hydrogen as an alternative fuel has increased for many applications over the past decade, from mobile electronics to aerospace industries [1-3]. Solid storage of hydrogen using a reversible metal hydride is one of the most promising methods for hydrogen storage [3-5]. Advantages of using reversible metal hydrides include improved safety, reduced environmental impact, and high hydrogen storage capacity. The high temperature required for the formation of metal hydrides with acceptable hydrogen uptake and release kinetics, however, is an important limitation that makes the process expensive [3,6,7].

Magnesium-based hydrides, with a reversible hydrogen capacity of up to 7.6 wt% for on-board applications, are promising for hydrogen storage [8–10]. Magnesium hydride, MgH₂, has the highest energy density (9 MJ/kg Mg) of all of the reversible hydrides used for hydrogen storage. MgH₂ has a high H₂ capacity of 7.7 wt%, and is low cost, using readily available magnesium that has good reversibility [8,9]. However, the main disadvantages of using MgH₂-based hydrogen storage include the high temperature of hydrogen desorption (>673 K) and its high reactivity in air and oxygen [8,9]. Technologies currently under research for improving the hydrogen storage of MgH₂/Mg can be classified into four categories: alloying, nanoscaling, nanoconfinement, and additive-

E-mail addresses: cmpark@kumoh.ac.kr (C.-M. Park), kjjeon@inha.ac.kr (K.-J. Jeon). http://dx.doi.org/10.1016/j.ijhydene.2017.06.130

0360-3199/ \odot 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Youn J-S, et al., Enhancement of hydrogen sorption properties of MgH₂ with a MgF₂ catalyst, International Journal of Hydrogen Energy (2017), http://dx.doi.org/10.1016/j.ijhydene.2017.06.130

^{*} Corresponding author.

^{**} Corresponding author.

addition [11,12]. Ball milling/mechanical milling, a current technology, can be used for improving the surface and kinetic properties of MgH_2/Mg , due to changes caused by structural defects, phase change, and crystallinity [8–13].

Several experiments have been conducted for improving kinetics through ball milling of the bulk of magnesium metal, alloying with transition metal oxides or transition metal fluoride catalysts (such as TiF₃, NbF₅, and NiF₂), and destabilizing the magnesium-transition metal-hydrogen matrix [14–20]. MgH₂ could react with metal fluoride (TiF₃, NbF₅, etc.) and form MgF₂ during the milling and hydrogenation/dehydrogenation processes [15,20]. Liu and Susa [21] reported the formation of a MgF₂ layer on a Mg₂Ni particle, which suggests that MgF₂ has a high affinity to hydrogen with a rapid initial activation. Jian et al. [22] reported the effect of MgF_2 on the hydrogenation properties of MgH₂, and found that adsorption at a low temperature could be possible, since MgF₂ was evenly distributed within the MgH₂ powder. They also reported that the presence of chemically stable MgF_2 during hydrogen cycling affected the improvement of sorption ability; however, the actual role of MgF₂ on the dehydrogenation/hydrogenation of MgH₂ powder has not yet been systematically understood. The main objectives of this study were to investigate how the addition of MgF₂ catalyst enhanced the kinetics of the hydrogen desorption mechanism of metal hydride.

Experimental method

The methodology used for sample preparation and elements of the hydrogenation system have been described in depth in a previous study [23]. Therefore, only the experimental conditions are outlined here. MgH₂ particles (nominally 90% pure, with most of the remainder being Mg) were ball milled with 1, 3, and 10 mol% MgF₂ at 400 rpm for 60 min. Hydrogen absorption was measured using a PCT pro 2000 instrument (Hy-Energy, CA). Two conventional transmission electron microscopes (TEM, Zeiss Libra 200 FEG and CM 200 FEG, 200 kV accelerating voltage) were used for electron energy loss spectroscopy (EELS) and high-resolution imaging, respectively. MgH₂ powder was dispersed in hexane to minimize any possible exposure to air [24], and a drop of the suspension was deposited onto a Cu TEM grid in an argon glove box directly before the TEM session. The EELS technique was used to map the fluorine distribution of MgH₂-MgF₂ composites. The x-ray diffraction patterns of MgH2-MgF2 composites (as-synthesized, and after 3rd and 6th desorption of MgH₂-MgF₂) were identified with reference to the diffraction patterns of hexagonal Mg (JCPDS 04-0770), tetragonal MgH₂ (JCPDS 12-0697), and tetragonal MgF₂ (JCPDS 38-0882), respectively.

Result and discussion

Determination of optimal MgF2 loading conditions

Distribution and dispersion of the catalyst over the surface of magnesium particles are critical in determining hydrogen absorption and desorption kinetics. The effect of MgF_2 loading was evaluated using 1, 3, and 10 mol% MgF_2 (Fig. 1).

Fig. 1 – Effect of the addition of MgF_2 on hydrogen desorption capacities/kinetics. (desorption at 673 K and 0 bar).

The MgH₂-x mol% MgF₂ (x = 1, 3, and 10) composites show greater hydrogen desorption capacities than that of pure Mg at 673 K. The amount of hydrogen desorbed from MgH₂ with 3 and 10 mol% MgF₂ was 6.49 and 5.85 wt%, respectively, while uncatalyzed MgH₂ released 4.44 wt% of hydrogen (Fig. 1). In contrast, a 1 mol% MgF₂ sample desorbs 4.31 wt% of hydrogen, less than that of the pure MgH₂ sample, which is likely due to the insufficiency of MgF₂ in prohibiting the Mg grain growth. The composite processed with 3 mol% MgF₂ has a significantly higher hydrogen desorption capacity than that of the composite with 10 mol% MgF₂, which could render this composite less practical for onboard storage. Higher catalyst loading might increase the number of favorable H₂ dissociation sites; therefore, it increased the hydrogen dissociation [25]. In contrast, lower catalyst loading might not sufficiently cover

Fig. 2 – Effect of the addition of fluoride on the cycling behavior of MgH₂ (desorption at 673 K and 0 bar, and absorption at 573 K and 45 bar, composites milled for 1 h at 400 rpm with no transition metal catalyst added).

Please cite this article in press as: Youn J-S, et al., Enhancement of hydrogen sorption properties of MgH₂ with a MgF₂ catalyst, International Journal of Hydrogen Energy (2017), http://dx.doi.org/10.1016/j.ijhydene.2017.06.130 Download English Version:

https://daneshyari.com/en/article/5146648

Download Persian Version:

https://daneshyari.com/article/5146648

Daneshyari.com