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This paper gives a status on anisotropic mesh gradation. We present two 3D anisotropic formulations
of mesh gradation. The metric at each point defines a well-graded smooth continuous metric field over
the domain. The mesh gradation then consists in taking into account at each point the strongest size
constraint given by all these continuous metric fields. This is achieved by a metric intersection procedure.
We apply it to several examples involving highly anisotropic meshes.
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1. Introduction

In many engineering applications, it is desirable to generate
anisotropic meshes presenting highly stretched elements in ade-
quate directions. Numerous papers have been published on mesh
adaptation for numerical simulations in computational solid or fluid
mechanics. Among these papers, some have addressed the problem
of creating 3D unstructured anisotropic meshes [5,6,10,12,15,17,
20,21,23]. In these approaches, different mesh generation methods
are considered. Nonetheless all of them are based on the notion of
unit mesh in a Riemannian metric space.

In the context of numerical simulations based on finite element
or finite volume methods, these works have proved the efficiency of
unstructured mesh adaptation to improve the accuracy of the nu-
merical solution as well as for capturing the behavior of physical
phenomena. In principle, this technique enables to substantially re-
duce the number of degrees of freedom, thus impacting favorably
(i) the cpu time, (ii) the data storing and (iii) the solution analysis
(visualization). Moreover, it has been recently proved in [20] that
mesh adaptation impacts positively the order of convergence of nu-
merical scheme by computing the numerical solution with a coher-
ent accuracy in the entire domain.

The size prescription in the generation of anisotropic meshes is
achieved thanks to metric fields. However, such metric fields may
have huge variations making the generation of a unit mesh diffi-
cult or impossible, thus leading to poor quality anisotropic meshes.
Generating high-quality anisotropic meshes requires to smooth the
metric field by bounding its variations in all directions. To this end,
a mesh gradation control procedure was introduced in [4]. It con-
sists in reducing the size prescribed at mesh vertices by checking
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the metric variations along the mesh edges. The authors first de-
scribe an isotropic formulation fromwhich they deduce an extension
to anisotropic meshes. They present an homothetic reduction dedi-
cated for surface mesh generation and a non-homothetic reduction.
In the context of volume meshing, the homothetic leads to inconsis-
tency in the metric reduction during the size gradation procedure.
An anisotropic mesh gradation has also been presented in [16]. This
procedure considers spectral decomposition and associate eigenvec-
tors together with ad hoc choices. We prefer a formulation that uses
directly well-posed operations on metrics. In [22], an isotropic size
gradation control has been applied to the generation of multi-patch
parametric surface meshes.

In this paper, we give a status on anisotropic mesh gradation. We
present two 3D anisotropic formulations of mesh gradation extend-
ing the formulation given in [4] and we apply it to several exam-
ples involving highly anisotropic meshes. We formulate the problem
mathematically by employing the continuous modeling of a mesh
proposed in [19]. The metric at each point defines a well-graded
smooth continuous metric field over the domain. The mesh grada-
tion then consists in taking into account at each point the strongest
size constraint given by all these continuous metric fields. Numer-
ically, in the context of a mesh with a metric field given at its
vertices, the idea consists in imposing at each vertex a size constraint
related to all the other vertices of the mesh. To this end, all vertices
of the mesh span metric fields in the whole domain by growing their
metrics at a rate given by the desired gradation coefficient. Then,
the reduced metric at a vertex is the intersection between its met-
ric and all these metrics. Unfortunately, this mesh gradation algo-
rithm is intrinsically of quadratic complexity. We thus establish an
approximation to solve it in a linear time.

This paper is outlined as follows. In Section 2 the notion of a
metric and the metric-based method to generate anisotropic meshes
are described. In Section 3 the isotropic mesh gradation is recalled.
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Then, two anisotropic formulations of the mesh gradation are pre-
sented, Section 4. In the numerical examples, Section 5, we illustrate
the efficiency of the presented method for anisotropic mesh adap-
tation. We also exemplify that anisotropic mesh gradation can be
used for other applications such as the generation of well-graded
meshes. Finally, the limits of the proposed approaches are exempli-
fied on an analytical example in Section 6. New mesh gradation pro-
cedures improving the previous ones are then proposed to remedy
these problems.

2. Metric and mesh generation

In this section, we recall a metric-based method to generate
anisotropic meshes. It is based on the notion of Riemannian metric
space and on the concept of unit mesh initially introduced in [14].
Well-posed operations on metrics are introduced and we discuss
the numerical computation of the length of a given path in a metric
space.

2.1. Metric notion

A metric tensor (or simply a metric) M in Rn is an n×n symmet-
ric definite positive matrix. M is always diagonalizable and can be
decomposed as M = tR�R, where R and � are the eigenvectors
and the eigenvalues matrices of M, respectively. From this defini-
tion, it follows up that the scalar product of two vectors in Rn can
be defined related to a metric M as

〈u, v〉M = 〈u,Mv〉 = tuMv ∈ R,

where the natural dot product of Rn has been denoted by 〈., .〉. Under
this notion, the Euclidean norm of a vector u in Rn according to M
is defined as

‖u‖M =
√

〈u,u〉M =
√

tuMu

that actually measures the length of vector u with respect to metric
M. A metricM could be geometrically represented by its associated
unit ball, an ellipsoid, defined by

EM =
{
p
∣∣∣∣√topMop = 1

}
,

where o is the center of the ellipsoid, see Fig. 1. The main axes are
given by the eigenvectors of matrixM and the radius along each axis
is given by the inverse of the square root of the associated eigenvalue.

Definition 2.1. An Euclidean metric space is a vector space supplied
with a scalar product 〈., .〉M defined by metric tensor M. We denote
it (Rn,M). The distance between two points p and q is given by
dM(p,q) = √

tpqMpq. Finally, the length of a segment pq is the
distance between its extremities: �M(pq) = dM(p,q).
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Fig. 1. Ellipse and ellipsoid representing a metric.

Remark 2.1. If the metric defining the scalar product is the identity
matrix, M = In, then we get the standard Euclidean space (Rn, In)
supplied with the natural dot product: 〈., .〉. We denote by ‖ · ‖2 the
natural Euclidean norm.

It is then possible to define volumes and angles in an Euclidean
metric space. Let K be a bounded subset of Rn, the volume of K in
metric M is

|K|M =
∫
K

√
det(M) dK =

√
det(M)|K|In .

The angle between two vectors u and v is defined by the unique real
� ∈ [0,�] such that

cos(�) = 〈u, v〉M
‖u‖M‖v‖M

.

We now consider the more general case where the metric, and
thus the scalar product, vary all over the domain.

Definition 2.2. A Riemannian metric space is a continuous mani-
fold � ⊂ Rn supplied with a smooth metric M(·). We denote it by
(M(x))x∈�. The restriction of the metric to a point x of the manifold
defines a scalar product on the tangent space Tx�. The tangent space
equipped with this structure is an Euclidean metric space.

Contrary to the Euclideanmetric space case, the distance between
two points, i.e., the shortest path, is no more the straight line but it is
given by a geodesic. Nevertheless, in the context of mesh generation
or mesh adaptation, we are not interested in the distance between
two points but in the length of a path given by an edge of the mesh.
More precisely, in a Riemannian metric space (M(x))x∈�, the length
of an edge pq is calculated by using the straight line parametrization
�(t) = p + tpq, t ∈ [0, 1]:

�M(pq) =
∫ 1

0
‖�(t)‖dt =

∫ 1

0

√
tpqM(p + tpq)pqdt. (1)

Fig. 2 depicts iso-values of segment length from the origin, from the
standard Euclidean space to a Riemannian metric space. The plotted
function is f (x) = �M(ox) where o is the origin of the plane.

2.2. Anisotropic mesh generation

We briefly detail our approach to anisotropic mesh generation
based on the notion of unit mesh. The generation of anisotropic
meshes requires the specification of a mesh size in each direction at
each point of the domain. To this end, we consider metric tensors
to specify different sizes in different directions. Then, the idea is
to work in an adequate Riemannian metric space specifying sizes
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