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An algorithm for the discretization of general extrudable volumes into semi-structured meshes is pre-
sented in this paper. The set of considered extrudable volumes is limited to volumes formed by two
opposite topologically identical and geometrically similar cap surfaces, from which one is identified as
the source and the other one as the target surface, and by the set of lateral quad-mappable surfaces. The
source cap surface is discretized by an appropriate unstructured surface mesh which is projected onto the
target cap surface using an affine mapping defined between the parametric spaces of the cap surfaces.
This mapping is established by a least-squares fit of boundary nodes on the target surface. The structured
quad meshes on lateral surfaces are obtained by transfinite interpolation. The volume interior nodes used
to form inner layer of elements are defined by the mapping derived from a least-squares approximation
of all boundary nodes. The obtained mesh is then subjected to a specific two-phase smoothing. The
capabilities of the proposed algorithm are demonstrated by several examples.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Algorithms for the creation of extruded meshes are generally
considered very attractive and are usually implemented by most of
the mesh generation packages. There are several reasons for that.
First of all, prismatic elements as bricks and wedges, produced by
the extrusion methods, are quite popular in the engineering analysis
community (compared to the tetrahedral elements) because of their
favorable features especially from the computational point of view.
However, a general purpose fully automatic algorithm capable to
discretize complex geometrical domains of arbitrary topology into a
valid high quality hexahedral mesh is still hot topic of the research.
Therefore, a lot of attention has been focused on the development of
decomposition methods. These methods are based on splitting the
domain volume into simple parts that can be effectively discretized
by specialized algorithms. One of them is the extrusion method,
which has the potential to handle quite general shapes often referred
to as generalized cylinders.

The topology of a simple one-to-one extruded volume is defined
by a pair of cap surfaces on its top and bottom sides which are
linked together by a set of lateral surfaces. The cap surfaces must be
topologically equivalent to each other and the lateral surfaces have to
be quadmappable, this means bounded by four sides fromwhich one
pair of opposite sides is shared with the corresponding surface from
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the pair of cap surfaces. In the most simple case, the extruded shape
is defined by a surface swept along a particular control curve from
the initial position corresponding to the bottom (source) cap sur-
face to the final position corresponding to the top (target) cap sur-
face. This kind of volume can be generalized by allowing the surface
to change its orientation in space while being swept. Discretization
of such class of volumes might seem relatively simple because the
cross-section along the whole sweeping trajectory is geometrically
identical (except for some rigid body motions) with the cap surface.
Thus the location of all boundary and interior points can be calcu-
lated from the cap surface geometry, the control curve shape, and
the applied rigid body motions. However, problems arise when the
volume starts to fold over itself.

In this work, a more complex class of extruded volumes, operat-
ing with cap surfaces that are not geometrically identical, is consid-
ered. This implies several significant features. Firstly, the cap surfaces
may be of different area, shape and curvature. Moreover, there does
not exist a single common control curve describing the extrusion.
The sweep trajectory is uniquely defined only for those boundary
vertices of the cap surfaces that correspond to appropriate sides (in
the sweeping direction) of lateral surfaces.1 The standard procedure
to generate an extruded semi-structured mesh then consists of the

1 Note that if the lateral surfaces are already discretized by structured quadri-
lateral mesh, then the sweeping trajectory is defined for all boundary nodes of cap
surfaces.
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following steps:

1. identify the source and target cap surfaces,
2. generate an appropriate unstructured surface mesh over the

source surface,
3. generate a valid surface mesh over the target surface that is topo-

logically identical with the source mesh,
4. generate a valid structured quadrilateral mesh over lateral sur-

faces compatible with the cap surfaces,
5. generate a valid volume mesh inside the extruded volume.

With respect to the sweeping methodology, the most specific al-
gorithms are related to steps 1, 3, and 5. The mesh generation in
steps 2 and 4 can be performed by ordinary structured and unstruc-
tured surface mesh generation techniques. However, it is important
to mention that the quality of source and lateral surface meshes has
usually a great impact on the quality of the resulting volume mesh.
The identification of the source and target surfaces is rather straight-
forward, using just topological information, if one-to-one sweeping
volume is considered. However, sophisticated approaches are nec-
essary [1–4] if multiple source to multiple target sweeping or multi-
axis directional sweeping is to be applied. The generation of the valid
surface mesh on the target surface, with the same connectivity as the
source mesh, is not a trivial task. The problem is that cap surfaces
may differ significantly in the shape and curvature. This implies that
standard unstructured surface mesh generation methods cannot be
generally adopted. Instead, an appropriate projection technique has
to be applied. A simple and efficient projection approach based on
a least-squares approximation of an affine mapping between para-
metric representation of the loops of boundary nodes on the source
and target cap surfaces was presented in [5]. In [6], a different ap-
proach based on copying andmorphing of unstructured quadrilateral
meshes was elaborated. A lot of research was focused on the place-
ment of interior nodes which is crucial for producing a high quality
volume mesh. An early and rather single purpose advancing front
based approach introduced in [7] was replaced by a layer by layer
boundary mesh based interpolation in [8]. An elegant method us-
ing linear transformation determined by means of a least-squares fit
between the loops of the boundary nodes on cap surface and bound-
ary nodes of particular layer of extruded elements was published in
[9]. In [5], this approach was modified to a weighted least-squares
fit taking into account boundary nodes on both cap surfaces. Note
that for many geometries (especially with non-convex cross-section
or with not simply connected cap surfaces), the interior nodes have
to be subjected to a layer based smoothing [9,6] in order to improve
the volume mesh quality.

In the present work, a slightly different method for the mesh
generation in steps 3 and 5 is adopted. It uses a least-squares ap-
proximation of appropriate mapping based on Bernstein polyno-
mials. The mapping between the parametric spaces of source and
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Fig. 1. Representation of Bezier entities: (a) Bezier surface (order 3 × 3), (b) Bezier volume (order 2 × 2 × 3).

target surfaces is approximated by a Bezier surface of appropriate
order. Points of the control polygon of that surface are determined
by means of a least-squares fit between the parametric coordinates
of corresponding boundary nodes on the source and target surfaces.
Since the intermediate layers of nodes are not described by a surface
parameterization, this approach cannot be directly applied to the
generation of volume interior nodes. Instead, the extruded volume
is approximated by a Bezier volume of appropriate order. Its control
polygon points are again determined by a least-squares fit but this
time applied to all the boundary nodes of the extruded volume.
Because neither the mapping defined by the Bezier surface nor the
mapping defined by the Bezier volume is exact, the surface mesh on
the target surface as well as the final volume mesh is subjected to
appropriate smoothing.

The outline of this paper is as follows. Initially, representation
of a Bezier surface and volume is recalled in Section 2. The actual
sweeping algorithm is described in Section 3 in which a separate
subsection is dedicated to each of the above steps for the genera-
tion of extruded meshes. The capabilities of the proposed extrusion
methodology are demonstrated by a few examples in Section 4 and
the paper ends with concluding remarks in Section 5.

2. Bezier surface and volume representation

Bezier surfaces are typically used for the representation of free-
form geometrical entities. The Bezier surface of order M × N can be
written in the form

r(u,v) =
M∑
i=1

N∑
j=1

BMi (u)BNj (v)Pi,j, (1)

where r(u,v) is the positional vector of a point on the surface, Pi,j
are Bezier control polygon points, BMi (u) and BNj (v) stand for Bern-
stein polynomials of order M and N, and parameters u and v denote
curvilinear coordinates of the surface ranging from 0 to 1. While the
surface is interpolating the corner control points P1,1, PM,1, P1,N , and
PM,N , the remaining control points (if any) are only approximated
by the surface affecting the profile of curvilinear coordinates u and
v over the surface (Fig. 1 a). Note that if all the control points Pi,j
are coplanar, then the defined surface is planar, but generally folded
over itself. Similarly, the Bezier volume (Fig. 1b) of order M × N × P
can be described by

r(u,v, t) =
M∑
i=1

N∑
j=1

P∑
k=1

BMi (u)BNj (v)B
P
k(t)Pi,j,k. (2)

Again, the region is interpolating the corner control points, the re-
maining control points are only approximated. Bernstein polynomi-
als of order N can be expressed as

BNi (t) =
(
N − 1
i − 1

)
ti−1(1 − t)N−i, i = 1, 2, . . . ,N (3)
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