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a b s t r a c t

In this paper, six-node hybrid triangular finite element models are devised for axial symmetric Helmholtz

problems. In the formulation, boundary and domain approximations to the Helmholtz field are defined for

each element. While the boundary approximation is constructed by nodal interpolation, the domain

approximation satisfies the Helmholtz equation and is composed of spherical waves with source points

located along the axis of symmetry. To formulate rank sufficient six-node elements, a minimal of six wave

modes from three source points are required. Two methods of selecting the source points are attempted.

In the first method, the directions of the waves passing through the element are essentially parallel to

the three lines connecting the parametric center of the element and its three corner (or side) nodes. In

the second method, the directions are essentially equally spaced at 2p/3 interval in the r–z-plane. For the

attempted examples, the average error ratios of the proposed elements and the conventional element are

around 50%.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the hybrid finite element method for stress/structural
analyses, the displacement-based finite element models are
enhanced by introducing stress, strain or another displacement
as the additional field variable(s) to the displacement approxima-
tion constructed by nodal interpolation [1–10]. In the case of the
hybrid-displacement method, the additional field is a domain
displacement, which leads to equilibrating stress and may also
satisfy some homogeneous boundary conditions [2,3,9,10]. This
category of hybrid elements are also known as hybrid-Trefftz or
Trefftz elements linked by the displacement-frame or the boundary
displacement [4,6–10]. The underlying reason is that the domain
displacement is mainly truncated from a Trefftz solution set which
is the basis of the Trefftz non-singular boundary element methods.

A major challenge in finite element analyses of Helmholtz
problems is that the solutions are spatially oscillating throughout
the entire problem domains. While considerable computational
saving can be realized by using graded meshes in stress analyses,
the practice is not applicable to Helmholtz problems. Hence, the
mesh requirement induces tremendous computing load when the
wavenumber or the problem domain size increases. To better
tackle the issue, a number of wave-based approaches that make use

of solution sets for the wave or Helmholtz equations have been
proposed in the last decades. These include the Trefftz methods
[11–18], the plane-wave basis method [19–22] and the discontin-
uous enrichment method [23,24], among others.

Though a number of Trefftz boundary element methods have
been formulated for Helmholtz problems [11–15], Trefftz finite
element models do not appear to be abundant. Among them, the
least-square models [16,17] and the traction-frame models [18] can
be noted. All Trefftz models possess their own domain approxima-
tions which are extracted from Trefftz solution sets. In the plane-
wave basis method, the plane wave solutions are employed as the
nodal enrichment functions in the context of the partition of unity
finite element method [19–22]. The value of the Helmholtz variable
at a node is the sum of plane wave solutions which represent plane
waves propagating along different directions. Within the element,
the Helmholtz variable is obtained by the conventional nodal
interpolation. Thus, the system equation unknowns are the ampli-
tudes of the plane waves at the nodes but not the nodal value of the
Helmholtz variable. In the discontinuous enrichment method, the
coarse scale approximation constructed by the conventional nodal
interpolation is enriched by plane wave solutions. The enrichment
that is intended to resolve the fine scale phenomenon induces
discontinuity across the inter-element boundary [23,24]. Weak
enforcement of the continuity is implemented through Lagrange
multipliers. While the fine scale enrichments can be condensed
at element level, the multipliers which link the enrichments of
adjacent elements enter the global equation.
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In this paper, hybrid-Trefftz six-node triangular elements will
be formulated for the axial symmetric Helmholtz problem for
which there are hardly any advanced finite element models. Unlike
the previous Trefftz finite elements, the present ones can readily be
incorporated into the standard finite element program framework.
Independent boundary and domain approximations to the Helm-
holtz field are defined. The boundary approximation is constructed
by nodal interpolation. Equality of the two approximations is
enforced along the element boundary [25–27]. Indeed, the hybrid
variational functional employed in the formulation is similar to the
functional used in elasticity hybrid-Trefftz elements with displace-
ment-frame [2–4,8–10,18]. The spherical wave solutions are
employed to construct the domain approximation. For rank
sufficiency, a six-node element has to be equipped with at least
six wave modes from three source points. Two methods of selecting
the source points are attempted. In the first method, the directions
of the waves passing through the element are essentially parallel to
the three lines connecting the parametric center of the element
and its three corner (or side) nodes. In the second method, the
directions are essentially equally spaced at 2p/3 interval. For the
attempted examples, the average error ratios of the proposed
elements and the conventional element are around 50% at con-
siderably dense meshes.

2. Conventional formulation

Helmholtz equation is often introduced by using the steady
state acoustics. The Helmholtz variable u can be the spatial
amplitude of the acoustic pressure or the velocity potential. This
paper will restrict itself to bounded domains. Under the axial
symmetry, a problem domain O is often considered thru its cross-
sectional area A in the r–z-plane where rZ0, see Fig. 1. When A is
discretized into sub-areas or finite elements Aes, the problem can
be summarized as follows:

(a) Helmholtz equation: r2uþk2u¼ 0 in all Aes.
(b) Natural boundary condition:_n

T
r_u¼ t on all Ge

n.
(c) Essential boundary condition: u¼ u and du¼ 0 on all Ge

u.
(d) Natural interfacial condition: ð_n

T
r_uÞþ þð_n

T
r_uÞ� ¼ 0 on

all Ge
m.

(e) Essential interfacial condition: uþ ¼ u� and duþ ¼ du� on allGe
m.

In the above expressions, r2 is the Laplace operator (see the
appendix), r_ ¼ ð@=@r,@=@zÞT , _n ¼ ðcosyn,sinynÞ

T where yn is the
inclination of the outward normal vector of the element boundary

to the r-axis, k is the wavenumber, d is the variational symbol and
Ge

m is the inter-element boundary. Moreover, ( )+ and ( )� denote
the braced quantities at the two sides of Ge

m. In the absence of
dissipation, k is real; otherwise it is complex. For simplicity, it will
be assumed as usual that element boundary qAe can be partitioned
into the non-overlapping portions Ge

t , Ge
u and Ge

m, i.e.

Ge
t [ G

e
u [ G

e
m ¼ @Ae and Ge

t \ G
e
u ¼Ge

u \ G
e
m ¼Ge

m \ G
e
t ¼ null: ð1Þ

The terms ‘‘natural interfacial condition’’ and ‘‘essential inter-
facial condition’’ are not widely used. However, they are indeed the
interfacial counterparts of the natural and essential boundary
conditions, respectively.

The elemental variational functional for the conventional finite
element formulation of the Helmholtz problem is known to be

Pe
¼

1

2

Z
Oe
½ðruÞTru�k2u2�dO�

Z
Se

t

unudS ð2Þ

where u satisfies the essential boundary and continuity conditions.
Under the axial symmetry, the differential volume dO and differ-
ential surface area dS can be replaced by, respectively, 2pr dA and
2pr dG in which the common factor 2p can be neglected for
simplicity. Then, the functional becomes

Pe
¼

1

2

Z
Ae

½ðruÞTru�k2u2�r dA�

Z
Ge

t

unur dG ð3Þ

For any smooth axial symmetric functions f¼ f (r,z) and h¼h(r,z),
the divergence theorem can be read (see the appendix) asZ

Ae

½ðrhÞT ðrf Þþhr2f �r dA¼

I
@Ae

hð_n
T
r
_

f Þr dG ð4Þ

With h and f taken to be, respectively, du and u and recalling that
du¼0 on Ge

u, variation of (3) is

dPe
¼�

Z
Ae

duðr2uþk2uÞr dAþ

Z
Ge

t

duð_n
T
r
_

u�unÞr dS

þ

Z
Ge

m

duð_n
T
r
_

uÞr dS ð5Þ

It can be seen that the first integral enforces (a), the second
integral enforces (b) and the third integral, when dPes of the
adjacent elements are assembled, enforces (d).

Fig. 2(a) shows the six-node triangular element in the global
r–z-plane. To formulate a conventional element, r, z and u are
obtained by interpolation which can be expressed as

r¼
X6

i ¼ 1

Niri, z¼
X6

i ¼ 1

Nizi and u¼
X6

i ¼ 1

Niui

¼ ½N1,:::,N6�

u1

^

u6

8><
>:

9>=
>;¼Nd ð6Þ
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Fig. 1. Cross section A of an axial symmetric body in the r–z-plane. S denotes the

source point of the spherical wave u¼expðikRSÞ=ðkRSÞ where R2
S ¼ r2þðz�zSÞ

2. Over

the boundary of A, yn denotes the inclination of the outward normal vector to the r-

axis.
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Fig. 2. The six-node triangular element: (a) s and tA[0,1] are the area coordinates

and (b) the single for examining the condition numbers and invariance of the

element matrices.
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