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Two finite elements for the static analysis of smart beams with piezoelectric sensors/actuators are pre-
sented: ad hoc smart beam element (ADSBE) and variational asymptotic smart beam element (VASBE).
Both elements rely on the computation of the cross-sectional matrices associated with the electrome-
chanical properties of the beam cross-section. ADSBE uses the Timoshenko cross-sectional stiffness
matrix computed by the VABS program, and the electric field is assumed constant across the thickness
of each piezoelectric layer. Taking advantage of the cross-section discretization of the beam, all the
matrices related to the electric field are also computed by performing a numerical integration using
the VABS program that was extended to account for these new quantities. VASBE is based on the fully
coupled Timoshenko theory for smart beams constructed using the variational asymptotic method. This
theory decouples the original three-dimensional electromechanical problem to a two-dimensional elec-
tromechanical cross-sectional analysis and a one-dimensional beam analysis. The cross-sectional analysis
provides a one-dimensional constitutive model for the beam analysis without a priori assumptions
regarding the geometry of the cross-section, the electric field distribution, and the location of smart
materials. Several examples available in the literature are used to validate the accuracy of these two new
elements. The numerical results obtained using ADSBE and VASBE correlated well with other published
results. For structures that are out of the limits in which one structure may be modeled as a beam, the
ADSBE showed considerable errors and, therefore, should not be used. Nevertheless, VASBE was able to
predict the 3D results available in the literature with an error smaller than 8%.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In the most recent decades a tremendous advance in the tech-
nology of smart structures has shown its viability and potential on
numerous applications, such that space structures, aircraft, wind tur-
bines and helicopter rotors etc. In its fundamental nature a smart
structure consists of active materials, such as piezoelectrics, which
are able of sensing and reacting to external stimuli and, usually, are
integrated into the structure with a control unity.

Several mathematical models have been developed to describe
the behavior of structures that are actuated and sensed by piezo-
electric materials. However, the analytical predictive capabilities
for smart structures are still very limited in comparison to those
for conventional composite structures [1]. Searches for analytical
solutions lead to the simultaneous solution of the electric and
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mechanical equilibrium equations, which must be solved for a set of
boundary conditions [2]. The coupling of the electric and mechanical
constitutive equations will lead to the coupling of some boundary
conditions, thus the use of the conventional mechanical boundary
conditions may not be adequate to accurately predict the electrome-
chanical boundary coupling [3]. Exact solutions exist for a very few
specialized and idealized cases. For general cases, one needs to use
the finite element method to solve the coupled electromechanical
systems.

Structures can be analyzed using beam models if one dimension
is much larger than the other two dimensions. To take advantage of
this geometrical future, several researchers have proposed various
smart beam models to capture the behavior associated with the two
small dimensions eliminated in the one-dimensional beam analysis
[1]. This work handles two of the three models most used, the engi-
neering model that is based on a priori kinematic assumptions and
the asymptotic model which is based on the asymptotic expansion
of the three-dimensional quantities. Due to the huge number of
works that have been proposed, the engineering models dominate
the literature on the modeling of smart beams. An extensive and
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comprehensive review on the existing development and ongoing
progress in smart structures can be found in Refs. [4,5]. They can
be further classified as uncoupled models if only the induced strain
effect is modeled [6–9], or coupled models if both actuation and
sensing capabilities of smart materials are modeled simultaneously
[10–15].

The first order deformation theory which includes the Timo-
shenko theory for smart beams with actuation and sensing capa-
bilities implicitly incorporated in the model is used in this work.
Since real applications may involve actuators and sensors distributed
within the composite material of the beam cross-section, this for-
mulation will utilize the constitutive relations computed by VABS to
model the mechanical behavior. The voltage distribution within any
piezoelectric layer is assumed to be linear and the electric potential
distribution is modeled by the discrete linear layerwise formulation.
The resulting matrices of the layerwise formulation are computed
numerically by extending the VABS routines to these news quanti-
ties.

The variational asymptotic method (VAM) introduced by
Berdichevsky [16] has been used to construct models with both
merits of engineering models, related with a systematic and easy
implementation, and asymptotic models characterized by without
invoking a priori kinematic assumptions [17]. VAM was, recently,
applied to develop classical models for smart thin-walled beams
and solid beams and refined models for smart solid beams [18–20].
More recently, Roy et al. [1] presented an asymptotically correct
classical and Timoshenko beam model for smart beams [21]. No as-
sumptions were made on the distribution of mechanical and electric
field inside the structure.

In this study, we will first develop an ad hoc smart beam ele-
ment (ADSBE) based on the first order deformation theory, where
the mechanical displacement and the electric potential along the
beam axes is approximated by quadratic Lagrangean shape functions.
Then, based on the work by Roy [21], we will develop a variational
asymptotic smart beam element (VASBE) so that the actuating and
sensing capabilities can be implicitly included. The performance of
both elements is compared with several other models available in
the literature.

2. Ad hoc smart beam element (ADSBE)

The mathematical formulation of ADSBE uses a first order dis-
placement field and a piecewise, linear through-the-thickness elec-
tric potential.

2.1. Variational principle

This formulation will be based on the principle of virtual work
in which the potential energy accounts for the parts of the structure
that are made with piezoelectric material. The general form of this
principle is stated as
∫
�

�(U − W) d� = 0 (1)

where U represents the potential energy of the flexible body and W
the potential of the applied forces that are acting in the body.

The total potential energy for a structure that has parts madewith
piezoelectric materials is called electric enthalpy and is given as [10]

U = H = 1
2

∫
�
(eTCEe− 2ETee− ETgE) d� (2)

where e is the strain vector, E is the electric field, CE is the elas-
ticity tensor at constant electric field, e is the piezoelectric tensor,
and g is the dielectric tensor at constant strain. Furthermore, the
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Fig. 1. Slope and cross-sectional rotation of the beam.

magnetically static electric field E is related to the electric potential
field � as [10]

E = −∇� (3)

The total work W done by the external mechanical and electrical
loading is given by [22]

W =
∫
�
uTfb d� +

∫
�s

uTfs d�s −
∫
��

�q0 d�� +
∑
i

uT
i f

c
i (4)

in which u is the displacement field, fb is the body load vector, fs
is the surface load vector and fci is the ith concentrated load vector.
The charge density is represented by q0 and �s, �� are used to
represent the surfaces that are loaded mechanically and electrically,
respectively. Substituting Eqs. (2)–(4) into Eq. (1) and computing its
variation yields to the following variational statement:

∫
�
(deTCEe+deTeT∇�+(∇d�)Tee−(∇d�)Tg∇�−duTfb) d�

−
∫
�s

duTfs d�s +
∫
��

q0d�d�� −
∑
i

duTfci = 0 (5)

Because the strain field is related to displacement field, in Eq. (5),
there are four unknowns including the electric potential � and the
mechanical displacements u. The solution of these unknowns will
be obtained numerically using the finite element method.

2.2. Mechanical displacement and strain

Consider a set of unit vectors e1, e2, and e3 attached to the cen-
troid of the beam cross-section, with e1 aligned with the beam axis
while e2 and e3 used to define cross-sectional plane, as it is illus-
trated in Fig. 1.

Let u1(x1, x2, x3), u2(x1, x2, x3) and u3(x1, x2, x3) be the displace-
ment components of an arbitrary point of the beam in the e1, e2, and
e3 directions, respectively. If the cross-section is assumed to move
like a rigid body, the displacement field in the plane of the cross-
section is

u1(x1, x2, x3, t) = u01(x1, t) + x3�2(x1, t) − x2�3(x1, t)

u2(x1, x2, x3, t) = u02(x1, t) − x3�1(x1, t)

u3(x1, x2, x3, t) = u03(x1, t) + x2�1(x1, t) (6)

where u01,u
0
2,u

0
3 are the displacements of the neutral axes and �1 is

the twist angle of the cross-section about x1. The rotations of the
cross-section �2(x1, t) and �3(x1, t) are positive about axes e2 and
e3, respectively. The set of strain equations can be derived from
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