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Balancing the distribution of flow through a die to achieve a uniform velocity distribution is the primary
objective and one of the most difficult tasks of extrusion die design. If the manifold in a Coat-hanger die
is not properly designed, the exit velocity distribution may be not uniform; this can affect the thickness
across the width of the die. Yet, no procedure is known to optimize the coat hanger die with respect
to an even velocity profile at the exit. While optimizing the exit velocity distribution, the constraint
optimization algorithm used in this work enforced a limit on the maximum allowable pressure drop in
the die; according to this constraint we can control the pressure in the die. The computational approach
incorporates three-dimensional finite element simulations software Rem3D� and includes an optimiza-
tion algorithm based on the global response surfaces with the Kriging interpolation and SQP algorithm
within an adaptive strategy of the search space to allow the location of the global optimum with a fast
convergence. The optimization results which represent the best die design are presented according to the
imposed constraint on the pressure.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The design of dies for polymer extrusion often involves trial and
error corrections of the die geometry to achieve uniform flow at the
exit. If the repartition channel in a flat die is not designed properly,
the velocity at the exit of the flat die may not be uniform [1], and
leads to a variation in the sheet thickness across the width of the die.

Often, the number of the involved variables and their interactions
prevent any optimization according to the trial and error corrections,
because the number of evaluations needed may become very high.
Design of experiment, in particular the Taguchi method [2], allows
obtaining invaluable information on the important variables of the
process in order to achieve the required goals. The effects of the var-
ious factors can be represented on graphs to support the discussion
and to lead to identify the most sensitive to minimize the defects.
Within this framework, we canmention Chen et al. [3]. They showed,
using the Taguchi method, that the operating conditions, the type of
materials, and the geometry of the die have a great influence on the
exit velocity distribution on the die.

Prior works in sheet die optimization have involved the use of
lubrication approximations of the momentum equations [4,5]. If the
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geometry is more complex, a flow channel can be approximated with
simple geometric sections [6]. Smith et al. [7,8] modeled Newtonian
and non-Newtonian isothermal flow in a coat hanger die using a
generalized Hele–Shaw (HS) approximation, and optimized the die
by minimizing pressure drop subject to exit flow uniformity being
within a tolerance set. The sensitivities analysis needed for the se-
quential quadratic programming (SQP) algorithm was calculated by
direct differentiation and the adjoint method are compared, and si-
multaneous minimization of velocity dispersion subject to residence
time variations is added using Broyden Fletcher Goldfarb Shanno
(BFGS) algorithm and penalty function. The same author [9] in order
to optimize the shape of the extrusion die for two different mate-
rials at various temperatures, used and compared two optimization
algorithms with constraint based on SQP and sequential linear pro-
gramming (SLP). The optimization problem consists in minimizing
the pressure loss in the die, with an imposed constraint so that a
homogeneous velocity distribution is obtained on the outlet side of
the die within an imposed tolerance. Network algorithms have been
developed to optimize die designs [10] but they are difficult to ap-
ply to arbitrary shapes. Michaeli et al. [11] have used a combination
of finite element analysis for isothermal flow and flow analysis net-
work to accelerate the iterative optimization process for the design
of profile extrusion dies. To optimize the die geometry, they used,
respectively, the evolution strategy algorithm and network theory.
Sun et al. [12] optimize a flat die using BFGS algorithm. A penalty

http://www.sciencedirect.com/science/journal/finel
http://www.elsevier.com/locate/finel
mailto:lebaal_nadir@yahoo.fr
mailto:nadhir.lebaal@insic.fr


334 N. Lebaal et al. / Finite Elements in Analysis and Design 45 (2009) 333 -- 340

Nomenclature

a, m, �, A1, A2 material constants
â� coefficients vectors
� weight coefficient
A, B, C, D optimization variables
c dilation parameter
di distance from a discrete node xi to

a sampling point x
E velocity dispersion
E0 initial velocity dispersion
�(v) strain rate tensor
�̃ tolerance
F(x) responses from the function
g constraint function
˙̄� shear rate
� fluid viscosity (dependent of the

temperature T, pressure p, and of
the strain rate tensor �(v) through
the shear rate ˙̄�)

�0(T) thermal dependency

J normalized objective function
J̃(x) objective or constraint interpolate

function
k number of the basis function in re-

gression model
N number of nodes at the die exit
P pressure
P0 initial pressure in the die
p̂(x) basis function
R correlation matrix
rw radius of support domain
S1, S2, S3 surfaces
T temperature
Tref references temperature
v velocity
vi exit velocity
v average exit velocity
wi(x) weight function of Gaussian type
x design variables
Z(x) random fluctuation

function was introduced to enforce a limit on the maximum allow-
able pressure drop in the die.

The optimization algorithm must be carefully chosen when one
single analysis using three-dimensional software requires several
hours of CPU time. Non-deterministic or stochastic methods such as
Monte Carlo method and genetic algorithm [13] can obtain global
minimum but they need a lot of evaluations for the functions to
converge. Gradient methods [7–10,12,14] require the computations
of the gradients of the functions; the computation of gradients by
finite difference is time consuming and depends on the perturbed
parameters. For the above reasons we decided to chose a response
surface method (RSM) [15].

The ultimate goal of this work is to optimize the coat hanger sheet
die geometry (Fig. 1) in a way that a uniform velocity distribution is
obtained at the die exit with an imposed nonlinear constraint so that
the pressure loss in the die must decrease compared to the initial die.

For this end, we developed an automatic optimization algorithm
based on SQP algorithm and a RSM together with Kriging interpo-
lation and several strategies to permit to obtain a precise global
optimum with a fast convergence. A preliminary study based on
Taguchi's design of experiments method [3] was conducted, in or-
der to identify the most sensitive design variables. To compute a 3D
flow in extrusion dies we used FEM software (REM3D�) [16]. This
software takes into account strain rate and temperature dependence.

2. Modeling and simulation

The extrusion simulation is carried out using the 3D computation
software by finite elements REM3D� [16].

The flow equations are derived from the Navier–Stokes incom-
pressible equations. A mixed finite element method for incompress-
ible viscous flow is used. The flow solver uses tetrahedral elements
with a linear continuous interpolation of both the pressure and the
velocity and a bubble enrichment of velocity.

The mass, momentum and energy conservation equations, are
used to follow the material behavior, from which the velocity, pres-
sure and temperature fields are determined.

⎧⎪⎪⎨⎪⎪⎩
∇(2�( ˙̄�)�̇(v)) − ∇p = 0

∇ · �v = 0

�ĉ
dT
dt

= −∇ · q + 	 : �̇(v)

(1)

The behaviors laws used in Rem3D� give an expression of the
viscosity in function of the shear rate and temperature. In this paper,
the geometry of a flat die is optimized for an acrylonitrile butadiene
styrene (ABS, Astalac EPC 10000). The rheological parameters of the
ABS are given in Table 1. Carreau Yasuda/WLF viscosity model is used
to characterize the temperature and shear rate dependence [17]. It
is written as

� = �0(T)

[
1 +

(
�0(T)

˙̄�
�s

)�]m−1/�

(2)

In this model, a, m, � are material constants, whereas �0(T) estab-
lishes the thermal dependency, given by the WLF model:

�0(T) = �0(Tref ) exp

[
A1(Tref − Ts)

A2 + (Tref − Ts)
− A1(T − Ts)

A2 + (T − Ts)

]
(3)

where A1, A2 are material constants, and Tref is the references tem-
perature.

A flow of 50000mm3/s was imposed on the entry with a tem-
perature of 240 ◦C, and the temperature of the die is constant and
equals to 230 ◦C.

3. Formulation of the optimization problem

3.1. Objective and constraint functions

This optimization problem consists in determining an optimal ge-
ometry to homogenize the velocity distribution through the die exit,
which corresponds to the minimum of the velocity dispersion (E).
While preventing that the pressure “pressure loss” increases more
than the pressure obtained by the initial geometry. We can also
impose a more severe constraint on the pressure; this condition is
translated by a constraint function (g).⎧⎪⎪⎨⎪⎪⎩
min J(
) = E

E0

such that g = P − (� ∗ P0)
(� ∗ P0)

�0
(4)

where (J), the normalized objective function, the velocity dispersion
(E), is defined as

E =
⎛⎝ 1
N

N∑
i=1

( |vi − v|
v̄

)⎞⎠ (5)
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