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a b s t r a c t

This paper presents a new nodal position finite element method (NPFEM) as an alternative to the existing

finite element method (FEM) for plane elastic problem. The newly developed method addresses the

complications of the existing FEM in dealing with dynamic problems experiencing large rigid-body

motion coupled with small elastic deformation. Unlike the existing FEM that is based on nodal

displacements, the new NPFEM uses nodal positions as basic variables to eliminate the need to decouple

the elastic deformation from the rigid-body motion. As a result, it can avoid the accumulated errors arising

from the existing FEM over a long period of time by comparing the deformed element with its undeformed

status directly. This will be very useful in dynamic modeling of mechanical system where the current

positions of parts are more meaningful to designers than the displacements. In addition, the new NPFEM

has the potential to address the need in bridging the position based molecular dynamics (MD) to the

displacement based finite element (FE) modeling in the multiscale MD/FE analysis. Thus, the NPFEM can

provide a unified description in multiscale MD/FE modeling in future.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Many mechanical systems experience very large rigid-body
motions coupled with very small elastic deformations. For instance,
the elastic pendulum [1], the towed cable/array systems [2],
and the flexible linkage systems [3], just to name a few. For this
type of mechanical systems, the current positions of the systems
are usually more meaningful than the displacements for the
designers and analysts. Unfortunately, the existing finite element
methods are displacement based solution procedures. They solve
for the displacements of the systems relative to their previous
positions in order to obtain the current positions of the systems by
adding the displacements to the previous positions. However, this
approach suffers from the accumulated errors arising from each
step, which will eventually lead to erroneous and unstable
solutions over a long period of time due to the violation of
energy conservation. For instance, let us consider a rectangular
plate experiencing a rigid-body rotation as shown in Fig. 1. The
displacements of any point in the plate can be expressed as

u¼ xðcosy�1Þ�ysiny
v¼ xsinyþyðcosy�1Þ

(
ð1Þ

Accordingly, the Green–Lagrangian strain and the strain energy in
the plate should be zero such as
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The common approach used in the existing finite element
method is, if the elastic deformation is small and the material
obeys Hooke’s law [4]
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where the higher order term gT Dg is small and ignored. In addition,
the D is the elastic matrix
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Substituting Eqs. (3) and (5) into Eq. (4) leads to
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ðcosy�1Þ2ðd11þd12ÞdV a0

ð6Þ

The approximated strain energy becomes zero only if the rigid-
body rotation y is small, i.e., cosy�1� 1�1¼ 0. Thus, the existing
approach requires the rigid-body rotation be small within each
step. In addition, it introduces an approximation error in each step
although it is small. Over a long period of time, the accumulated
error may become significant.

Many efforts have been devoted to this problem in the literature,
e.g., the symplectic numerical integrator to ensure the energy
conservation of the discretized system [5]. These methods are
usually complicated in mathematics. Different from the efforts that
enhances the existing displacement based finite element methods,
some efforts have been devoted to develop an alternative finite
element procedure to solve the positions of a system directly after
realizing that the positions are the main interest for certain
applications. For instance, the author has published a new finite
element procedure [2] in 1998 to solve the positions of a towed
cable directly. In the same time, Shabana [3] published in 1998 an
absolute nodal coordinate finite element method (ANCFEM) to
solve the positions and the slopes of a beam directly. Different from
the existing finite element method, the ANCFEM represents the
rotation angles of a beam with a set of slopes of beam’s neutral axis.
It solves the difficulty associated with 3D large rotation with added
numbers of degrees of freedom. As a result, ANCFEM cannot use the

existing beam elements and has to derive its own element. The
method has been well accepted in finite element community and
later expanded to model the cables and plates/shells [8]. Recently,
we standardized our finite element procedure in Ref. [2] and named
it as nodal position finite element method (NPFEM) [6,7] for the
dynamic modeling of cable systems. Although the name of our
method is similar to the existing ANCFEM and both methods solve
for the nodal position of an element directly, the NPFEM uses
existing cable or bar elements in its procedure, which is different
from the ANCFEM. In addition to the nodal position based methods
for cables, beams and plates/shells, the authors are unaware of any
effort in the literature to solve the plane elastic problem using the
nodal position finite element method.

The current paper devotes to the development of the NPFEM for
a plane elastic problem. The proposed NPFEM shall be able to use
the existing plane elements so that it can be easily integrated into
existing finite element codes. The paper contains four sections.
Following this introductory section, Section 2 provides a detailed
account of the newly developed nodal position finite element
method. In Section 3, we validate the newly developed NPFEM by
various static and dynamic examples. Finally, in Section 4, we
conclude the paper.

2. Nodal position finite element method

Consider a rectangular plane element as shown in Fig. 2 in the
global coordinates OXY. The nodal coordinates are denoted as (Xi, Yi,
i¼1, y, 4). We assume the element moves to a new position under
external loads with new nodal coordinates ( ~X i, ~Y i). The local
coordinate system of the element (x, y) is defined with x-axis
along one side of the element and y-axis perpendicular to the
x-axis, see Fig. 2. Denote the new nodal coordinates in the local
coordinates as ~xe ¼ f ~x1, ~y1, ~x2, ~y2, ~x3, ~y3, ~x4, ~y4g

T . To calculate the
strain of the deformed element, we add an imaginary
undeformed element as a reference. Thus, by inspection, the
nodal coordinates of the stress-free imaginary element in the
local coordinates can be constructed as xe ¼ f ~x1, ~y1, ~x1þa, ~y1, ~x1þ

a, ~y1þb, ~x1, ~y1þbgT . Furthermore, assume the position vectors of an
arbitrary point P inside the element before and after deformation
can be interpolated using bi-linear shape functions and nodal
coordinates, such that

r¼ fx,ygT ¼Nxe and ~r ¼ f ~x, ~ygT ¼N ~xe ð7Þ

Accordingly, the elastic displacements in the element can be
obtained as follows:

u¼ fu,vgT ¼ ~r�r¼Nð ~xe�xeÞ ð8Þ
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Fig. 1. A plate experiences a rigid-body rotation.
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Fig. 2. Element before and after deformation.
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