
international journal of hydrogen energy XXX (2016) 1–8 $\,$

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Mo₂N: An efficient non-noble metal cocatalyst on CdS for enhanced photocatalytic H₂ evolution under visible light irradiation

Baojun Ma*, Yahui Liu, Jie Li, Keying Lin, Wanyi Liu, Haijuan Zhan

State Key Laboratory Cultivation Base of Natural Gas Conversion, College of Chemistry, Ningxia University, Yinchuan 750021, China

ARTICLE INFO

Article history: Received 16 June 2016 Received in revised form 29 July 2016 Accepted 21 August 2016 Available online xxx

Keywords: Molybdenum nitride Cocatalyst Photocatalysis H₂ evolution

ABSTRACT

 Mo_2N as an efficient non-noble metal cocatalyst was firstly reported for improving photocatalytic H_2 evolution under visible light irradiation. The activity of 2.0% Mo_2N/CdS is 6.1 times of CdS alone and 1.4 times of 1.0% Pt/CdS. The longevity test shows the Mo_2N/CdS is very stable in 42 h. After 42 h, the activity of Mo_2N/CdS gradually decreases. However, even after 90 h, the activity of Mo_2N/CdS also keeps the 49% of that fresh catalyst. The molybdenum oxides, CdMoO₄ on the surface of Mo_2N may combine CdS with Mo_2N closely, protect Mo_2N cocatalyst and inhibit the reversible reaction of H_2 production, thus increase the photocatalytic activity and the stability of Mo_2N/CdS . This study demonstrates Mo_2N is a new efficient low cost non-noble metal cocatalyst in photocatalytic H_2 evolution.

 \odot 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

In the past several decades, owing to the global problems of energy crisis and environment pollution, photocatalytic H_2 production based on a semiconductor photocatalyst has attracted much more consideration [1–6]. Cocatalyst is a crucial factor to enhance the photocatalytic activity in the system of photocatalytic H_2 production [7–9]. However, the cocatalysts for H_2 production are mainly composed of noble metals which result in the high cost of the photocatalysts [10–12]. The high cost and the low efficiency of the photocatalyst limits the industrialization of the photocatalytic H_2 production technology. Thus, developing new effective cocatalyst with low cost is greatly urgent. Some alternative cocatalyst based on nonprecious metals have been reported for photocatalytic H₂ production, recently, such as Mo₂S, WS₂, NiS, Mo₂S/graphene, WC, MoP etc. [7,13–19] The kinds of reported non-noble metal cocatalyst are mainly sulfides and relatively rare, so it is important to develop non-sulphide cocatalysts with low cost. Molybdenum-based compounds including Mo₂C, Mo₂N and MoP are typical materials which have similar properties of Pt and extensively been researched in hydrogenation reactions, hydrodesulphurization, hydrodenitrogenation, and electrochemical applications for substitute of noble metals [20–24]. Recently, we have reported Mo₂C is an efficient cocatalyst for enhanced photocatalytic H₂ evolution [25], and the activity on Mo₂C/CdS is ten times higher than CdS alone and 2.3 times higher than Pt/CdS. This also demonstrates Molybdenum-

* Corresponding author.

E-mail address: bjma@nxu.edu.cn (B. Ma).

http://dx.doi.org/10.1016/j.ijhydene.2016.08.133

0360-3199/© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Ma B, et al., Mo_2N : An efficient non-noble metal cocatalyst on CdS for enhanced photocatalytic H_2 evolution under visible light irradiation, International Journal of Hydrogen Energy (2016), http://dx.doi.org/10.1016/j.ijhydene.2016.08.133

based compounds with similar properties of Pt has potential prospect as cocatalysts for substitution of noble metals in photocatalytic H_2 evolution. Though, the Mo_2N has not reported as a cocatalyst in the photocatalytic H_2 evolution to date as far as we know.

Herein, the nitride Mo_2N was reported for the first time as an effective cocatalyst for photocatalytic H_2 production. When the Mo_2N combined with CdS, the activity of H_2 production on Mo_2N/CdS was largely improved and even higher than the Pt/CdS.

Experimental

Synthesis of Mo₂N materials

In this paper, all chemicals (Sinopharm Chemical Reagent Co., Ltd) used in the tests were of analytical grade and used directly without further purification. Firstly, amount of molybdic acid (H_2MoO_4) was dissolved in excess aqueous ammonia solution, evaporated to dryness then calcined at 500 °C for 5 h in the air. Then, the samples were reduced by temperature programmed reduction method for 4 h at the target temperature under flowing gas of NH₃ at a gas flow rate of 100 mL/min. The target temperatures were chosen as 650, 700, 750, 800 and 850 °C. The sample was rapidly cooled to room temperature in flowing gas of NH₃ and then passivated in mixed gas of N₂ and O₂ with the ratio of 99 for 12 h to form a stable material.

Preparation of Mo₂N/CdS and CdMoO₄/CdS photocatalysts

CdS and CdMoO₄ had synthesized by many methods [26-34]. Here, The precipitation and hydrothermal methods were used to prepare CdS and CdMoO₄, respectively. Then, the coprecipitation method was used to prepare Mo₂N/CdS and CdMoO₄/CdS. Typically, amount of Mo₂N was dispersed in 0.14 mol/L of cadmium acetate solution. Then, 0.14 mol/L of Na₂S solution was added dropwise under vigorous agitation and then aged for 12 h. Last, the deposit was filtered by distilled water and ethanol several times and then dried at 60 °C for 12 h in vacuum drying oven. CdMoO₄ was synthesized according to the previous literature [26]. In a typical synthesis procedure, the mixture of Na₂MoO₄·2H₂O (2 mmol), Cd(NO₃)₂·4H₂O (2 mmol) and 14 mL deionized water was transferred into a Teflon lined steel autoclave of 40 mL after vigorous agitation and the autoclave heated under autogenous pressure at 200 °C for 24 h. Then, the autoclave was cooled to room temperature gradually. The white precipitate was washed with distilled water three times and then was dried at 60 °C in air. The CdMoO₄/CdS was prepared using the same method as Mo₂N/CdS.

Characterizations of catalysts and cocatalysts

Powder X-ray diffraction (XRD) data of cocatalysts and photocatalysts were acquired on a D/MAX2500 (Rigaku, Japan) diffractometer with Cu K alpha radiation at a voltage of 40 KV. The scanning electron microscopy (SEM) measurements were carried out on a scanning electron microscope (KYKY2800B). High resolution transmission electronmicroscopy (HRTEM) and TEM measurements were performed on a transmission electron microscope (F20/G20). The UV–Vis diffuse reflection spectroscopies (UV–Vis DRS) were recorded on a spectrometer (U-4100) using the BaSO₄ as the corrected base line. The specific surface areas of the cocatalysts and photocatalysts were measured on a Micromeritics ASAP-2000 Physisorption analyzer, using the nitrogen adsorption and desorption method of Brunauer–Emmett–Teller (BET) at 77 K. The X-ray photoelectron spectra (XPS) data were obtained on a Thermo ESCALAB 250Xi spectrometer using Al as the exciting source (h_V = 1486.6 eV, 150 W).

Photocatalytic experiments

The photocatalytic hydrogen evolution reactions were carried out in a closed gas system using a 300 W Xe lamp (Perfect, China) with 420 nm filter ($\lambda \geq 420$ nm) as a visible light source. 0.1 g of the Mo_2N/CdS photocatalyst was dispersed in a 200 mL mixed solution of 1.0 mol/L of Na_2S and 1.0 mol/L Na_2SO_3 by a magnetic stirrer. The dispersed solutions were firstly degassed by evacuation and then irradiated by the 300 W Xe lamp. The evoluted hydrogen gas was measured by an online gas chromatography analysis using 5 Å molecular sieve column, TCD detector and Ar carrier.

For measurements of the activities of photocatalysts with loading of noble metal cocatalyst, the same methods using in situ photo deposition and the same loading amounts of noble metals (1.0%, weight ratio) were adopted as the literature [25].

Results and discussion

The Mo₂N cocatalyst is prepared via temperature programmed reduction method under flowing gas of NH₃ using MoO₃ as precursor. Fig. 1 shows the XRD patterns of MoO₃ samples nitrided at different temperatures under NH₃ flow for 4 h. The XRD of the MoO₃ sample was also presented for comparison. It is clearly seen that the sample is reduced to MoO₂ at 650 °C (JCPDS#32–0671). At and over 700 °C, the Mo₂N

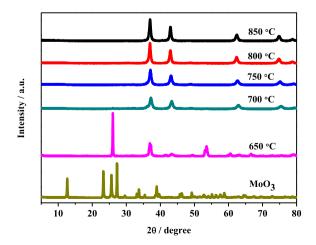


Fig. 1 – The XRD patterns of MoO_3 samples nitridized at different temperatures under NH_3 flow for 4 h. The XRD of the MoO_3 sample was also presented for comparison.

Please cite this article in press as: Ma B, et al., Mo_2N : An efficient non-noble metal cocatalyst on CdS for enhanced photocatalytic H_2 evolution under visible light irradiation, International Journal of Hydrogen Energy (2016), http://dx.doi.org/10.1016/j.jijhydene.2016.08.133

Download English Version:

https://daneshyari.com/en/article/5147221

Download Persian Version:

https://daneshyari.com/article/5147221

Daneshyari.com