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a b s t r a c t

The ever increasing number of shape memory alloy applications has motivated the development of

appropriate constitutive models taking into account large rotations and moderate or finite strains. Up to

now proposed finite-strain constitutive models usually contain an asymmetric tensor in the definition

of the limit (yield) function. To this end, in the present work, we propose an improved alternative

constitutive model in which all quantities are symmetric. To conserve the volume during inelastic

deformation, an exponential mapping is used to arrive at the time-discrete form of the evolution

equation. Such a symmetric model simplifies the constitutive relations and as a result of less

nonlinearity in the equations to be solved, numerical efficiency increases. Implementing the proposed

constitutive model within a user-defined subroutine UMAT in the nonlinear finite element software

ABAQUS/Standard, we solve different boundary value problems. Comparing the solution CPU times for

symmetric and asymmetric cases, we show the effectiveness of the proposed constitutive model as well

as of the solution algorithm. The presented procedure can also be used for other finite-strain

constitutive models in plasticity and shape memory alloy constitutive modeling.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Shape memory alloys (SMAs) are unique materials with the
ability to undergo large deformations regaining the original shape
either during unloading (superelastic or pseudo-elastic (PE)
effect) or through a thermal cycle (shape-memory effect (SME))
[1,2]. Since such effects are in general not present in standard
alloys, SMAs are often used in innovative applications. For
example, nowadays pseudo-elastic Nitinol is a common and
well-known engineering material in the medical industry [3,4].

The origin of SMA features is a reversible thermo-elastic
martensitic phase transformation between a high symmetry,
austenitic phase and a low symmetry, martensitic phase.
Austenite is a solid phase, usually characterized by a body-
centered cubic crystallographic structure, which transforms into
martensite by means of a lattice shearing mechanism. When the
transformation is driven by a temperature decrease, martensite

variants compensate each other, resulting in no macroscopic
deformation. However, when the transformation is driven by the
application of a load, specific martensite variants, favorable to the
applied stress, are preferentially formed, exhibiting a macroscopic
shape change in the direction of the applied stress. Upon
unloading or heating, this shape change disappears through the
reversible conversion of the martensite variants into the parent
phase [1,5].

For a stress-free SMA material, four characteristic tempera-
tures can be identified, defined as the starting and finishing
temperatures during forward transformation (austenite to mar-
tensite), Ms and Mf, and as the starting and finishing temperatures
during reverse transformation, As and Af. Accordingly, in a stress-
free condition, at a temperature above Af, only the austenitic
phase is stable, while at a temperature below Mf, only the
martensitic phase is stable. As a consequence, applying a stress at
a temperature above Af, SMAs exhibit a pseudo-elastic behavior
with a full recovery of inelastic strain upon unloading, while at a
temperature below Ms, the material presents the shape-memory
effect with permanent inelastic strains upon unloading which
may be recovered by heating.

In most applications, SMAs experience a general thermo-
mechanical loading conditions more complicated than uniaxial or
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multiaxial proportional loadings, typically undergoing very large
rotations and moderate strains (i.e., in the range of 10% for
polycrystals [1]). For example, with reference to biomedical
applications, stent structures are usually designed to significantly
reduce their diameter during the insertion into a catheter;
thereby, large rotations combined with moderate strains occur
and the use of a finite deformation scheme is preferred.

The majority of the currently available 3D macroscopic
constitutive models for SMAs has been developed in the small
deformation regime (see, e.g., [6–16] among others). Finite
deformation SMA constitutive models proposed in the literature
have been mainly developed by extending small strain models.
The approach in most cases is based on the multiplicative
decomposition of the deformation gradient into an elastic
and an inelastic or transformation part [17–25], though
there are some models which have utilized an additive decom-
position of the strain rate tensor into an elastic and an inelastic
part [26].

In the present work we focus on a finite-strain extension of the
small-strain constitutive model initially proposed by Souza et al.
[8] and extensively studied in Refs. [27–29]. We first develop a
finite-strain constitutive model containing an asymmetric tensor,
also observed in the constitutive equations of [20–24]. To this
end, we propose an improved alternative constitutive model
which is expressed in terms of symmetric tensors only. We then
implement the proposed model in a user-defined subroutine
(UMAT) in the nonlinear finite element software ABAQUS/
Standard and compare the solution CPU times for different
boundary value problems. The results show the increased
computational efficiency (in terms of solution CPU time), when
the proposed alternative symmetric form is used. This is mostly
due to the simplification in computing fourth-order tensors
appearing when a tensorial equation is linearized.

The structure of the paper is as follows. In Section 2, based on a
multiplicative decomposition of the deformation gradient into
elastic and transformation parts, we present the time-continuous
finite-strain constitutive model. In Section 3, we propose an
alternative constitutive equation which includes only symmetric
tensors. In Section 4, based on an exponential mapping, the time-
discrete form and the solution algorithm are discussed. In Section
5, implementing the proposed integration algorithm within the
commercial nonlinear finite element software ABAQUS/Standard,
we simulate different boundary value problems. We finally draw
conclusions in Section 6.

2. A 3D finite-strain SMA constitutive model: time-continuous
frame

We use a multiplicative decomposition of the deformation
gradient and present a thermodynamically consistent finite strain
constitutive model as done by Reese and Christ [20,21],
Evangelista et al. [22] and, more recently, by Arghavani et al.
[23,24]. The finite-strain constitutive model takes its origin from
the small-strain constitutive model proposed by Souza et al. [8]
and improved and discussed by Auricchio and Petrini [27–29].

2.1. Constitutive model development

Considering a deformable body, we denote with F the
deformation gradient and with J its determinant, supposed to be
positive. The tensor F can be uniquely decomposed as

F ¼ RU ¼VR ð1Þ

where U and V are the right and left stretch tensors, respectively,
both positive definite and symmetric, while R is a proper

orthogonal rotation tensor. The right and left Cauchy–Green
deformation tensors are then, respectively, defined as

C ¼ FT F , b¼ FFT
ð2Þ

and the Green–Lagrange strain tensor, E, reads as

E¼
C�1

2
ð3Þ

where 1 is the second-order identity tensor. Moreover, the
velocity gradient tensor l is given as

l¼ _F F�1
ð4Þ

The symmetric and anti-symmetric parts of l supply the strain
rate tensor d and the vorticity tensor w, i.e.,

d¼ 1
2 ðlþ lT

Þ, w¼ 1
2ðl�lT

Þ ð5Þ

Taking the time derivative of Eq. (3) and using (4) and (5), it can
be shown that

_E ¼ FT dF ð6Þ

Following a well-established approach adopted in plasticity
[30,31] and already used for SMAs [17–24], we assume a local
multiplicative decomposition of the deformation gradient into an
elastic part Fe, defined with respect to an intermediate config-
uration, and a transformation one Ft , defined with respect to the
reference configuration. Accordingly,

F ¼ FeFt
ð7Þ

Since experimental evidences indicate that the transformation
flow is nearly isochoric, we impose detðFt

Þ ¼ 1, which after taking
the time derivative results in

trðdt
Þ ¼ 0 ð8Þ

We define Ce
¼ FeT

Fe and Ct
¼ FtT

Ft as the elastic and the
transformation right Cauchy–Green deformation tensors, respec-
tively, and using definitions (2) and (7), we obtain

Ce
¼ Ft�T

CFt�1

ð9Þ

To satisfy the principle of material objectivity, the Helmholtz free
energy has to depend on Fe only through the elastic right Cauchy–
Green deformation tensor; it is moreover assumed to be a
function of the transformation right Cauchy–Green deformation
tensor and of the temperature, T, in the following form [22–24]

C¼CðCe,Ct ,TÞ ¼ce
ðCe
Þþct

ðEt ,TÞ ð10Þ

where ce
ðCe
Þ is a hyperelastic strain energy function and

Et
¼ ðCt

�1Þ=2 is the transformation strain. We remark that in
proposing decomposition (10), we have assumed the same
material behavior for the austenite and martensite phases. In
addition, we assume ce

ðCe
Þ to be an isotropic function of Ce; it can

be therefore expressed as

ce
ðCe
Þ ¼ce

ðICe ,IICe ,IIICe Þ ð11Þ

where ICe ,IICe ,IIICe are the invariants of Ce. We also define ct in the
following form [8,22,27–29]

ct
ðEt ,TÞ ¼ tMðTÞJEtJþ1

2hJEtJ2
þI eL
ðJEtJÞ ð12Þ

where tMðTÞ ¼ b/T�T0S and b, T0 and h are material parameters;
the MacCauley brackets calculate the positive part of the
argument, i.e., /xS¼ ðxþjxjÞ=2, and the norm operator is defined
as JAJ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A : AT

p
, with A : B¼ AijBij.

Moreover, in Eq. (12) we also use the indicator function I eL

defined as

I eL
ðJEtJÞ ¼

0 if JEtJreL

þ1 otherwise

(
ð13Þ
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