ARTICLE IN PRESS

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (2016) 1-7

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

One-pot synthesis of Ag–CoFe₂O₄/C as efficient catalyst for oxygen reduction in alkaline media

Ying Wang ^{a,c,*}, Qing Liu ^a, Limin Zhang ^a, Tianjun Hu ^b, Wenjing Liu ^c, Nan Liu ^c, Fangyue Du ^c, Qing Li ^c, Yixiao Wang ^c

^a School of Chemistry and Material Science, Shanxi Normal University, Linfen, 041004, China

^b Shanxi Normal University, Linfen, 041004, China

^c Modern College of Arts and Sciences, Shanxi Normal University, Linfen, 041004, China

ARTICLE INFO

Article history: Received 5 February 2016 Received in revised form 29 May 2016 Accepted 31 May 2016 Available online xxx

Keywords: Ag—CoFe₂O₄/C Oxygen reduction Oxygen evolution Alkaline media

ABSTRACT

Ag–CoFe₂O₄/C with one-pot solvothermal synthesis is described as an electrocatalyst for the oxygen reduction reaction (ORR) in alkaline solution. Compared to Ag/C and CoFe₂O₄/C, the Ag–CoFe₂O₄/C catalyst shows better activity for ORR in term of half-wave potential. The ORR on Ag–CoFe₂O₄/C mainly favours 4e⁻ reaction pathway. Compared to Pt/C, Ag–CoFe₂O₄/C exhibits good methanol tolerance and durability for ORR in alkaline solution. Furthermore, the Ag–CoFe₂O₄/C also displays high catalytic activity for OER.

© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Oxygen reduction reaction (ORR) plays an important role in electrochemical technologies, including metal-air batteries and fuel cells. However, the sluggish kinetics of the ORR limits the efficiency [1], so the development of catalyst for ORR is very vital. Pt-based materials have been recognized as the most efficient ORR catalysts. However, the high cost and scarcity hamper their large scale commercialization [2,3]. Therefore, it is important to develop highly active catalyst based on non-Pt materials for ORR.

Up to date, many non-Pt materials have been investigated as ORR catalysts, such as metal oxides [4–6] and carbon-base materials [7,8]. Among these, spinel oxides as efficient catalysts have attracted much attention because of low cost, environmental friendship and stability [9], For example, Chen and co-workers reported highly active $Co_xMn_{3-x}O_4$ spinels by a rapid room-temperature synthetic method. It was found that the $Co_xMn_{3-x}O_4$ nanoparticles manifested a remarkable high activity towards the ORR/OER as a result of their high surface area and numerous defects [10]. Moreover, Co_3O_4 [11,12], $CoFe_2O_4$ [13], $ZnCo_2O_4$ [14], $MnFe_2O_4$ [15] have been reported as efficient catalysts for ORR. It is known that the activity of spinel oxides is limited by their low conductivity [10]. So supporting the spinel oxides on carbon based materials is an effective approach [16,17]. The carbon materials have high electrical conductivity and large surface area, and some functional groups on carbon such as oxygen and nitrogen functional groups are beneficial for anchoring metal

* Corresponding author. School of Chemistry and Material Science, Shanxi Normal University, Linfen, 041004, China. E-mail address: wangyme@163.com (Y. Wang).

http://dx.doi.org/10.1016/j.ijhydene.2016.05.287

0360-3199/© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Wang Y, et al., One-pot synthesis of $Ag-CoFe_2O_4/C$ as efficient catalyst for oxygen reduction in alkaline media, International Journal of Hydrogen Energy (2016), http://dx.doi.org/10.1016/j.ijhydene.2016.05.287

oxides [18], which makes them good substrate for spinel oxides. Recently, Yang et al. reported a hybrid of $CoFe_2O_4$ supported on N/S dual-doped graphene as an efficient catalyst for ORR. This graphene structure not only facilitated the mass transfer of O_2 but also was beneficial for engineering the covalent coupling between $CoFe_2O_4$ and graphene which decreased the resistance of ORR process [19].

Compared to spinel oxides, Ag catalyst has good electron conductivity and is a kind of promising catalysts for ORR [20,21]. So far, there are many methods reported to improve the catalytic activity of Ag, such as alloying with metal [22], structure control [23], and compositing with metal oxides [24–27]. Among these, Ag/metal oxides has been studied the most [28,29]. Park et al. investigated the difference in ORR activities between Ag/Mn₃O₄/C and Ag/C in alkaline solution and found that Ag/Mn₃O₄/C showed higher activity than Ag/C due to the electronic effect between Ag and Mn₃O₄ [30].

Considering the low cost of $CoFe_2O_4$ and conductivity of Ag, we firstly investigated the electrocatalytic activity of Ag-CoFe₂O₄/C composite for ORR in alkaline media. To the best of our knowledge, the Ag-CoFe₂O₄/C composite as ORR catalyst has never been reported. The results suggested that this catalyst exhibited higher activity than Ag/C and CoFe₂O₄/ C, and better methanol tolerance and durability than Pt/C in alkaline solution.

Experimental

Catalyst preparation

The Ag–CoFe₂O₄/C was prepared through solvothermal method as described by Ma et al. [31] with some modifications. Typically, 0.6 g carbon black (Vulcan XC-72R) was dispersed in 60 mL of anhydrous ethanol by ultrasonication. 0.1181 g AgNO₃, 0.0929 g Co(NO₃)₂·6H₂O and 0.2579 g Fe(NO₃)₃·9H₂O were dissolved in 20 mL of anhydrous ethanol and added dropwise to carbon black ethanol solution. After 1.6 g CH₃COONa was added to the above mixture under continuous stirring, the solution was transferred to autoclave for hydrothermal reaction at 180 °C for 12 h. The product was washed with ethanol and distilled water several times, and dried in an oven at 80 °C for 12 h. The Ag/C and CoFe₂O₄/C.

Characterization

The phase structure of the composite oxides was determined by room-temperature X-ray powder diffraction (XRD) using an X-ray diffractometer (Bruker D8 Advance) with filtered Cu K α radiation. The morphology was examined by using JEM-2100 transmission electron microscopy (TEM). The X-ray photoelectron spectroscopy (XPS) was with Mg K α radiation recorded by VG ESCALAB 210 instrument. The actual loading was analyzed by Atomic Absorption Spectrometer (AAS, ContrAA700). The Ag and CoFe₂O₄ loading on every catalyst was about 7.2 wt.% and 9.6 wt.%, respectively.

Electrochemical measurements

The electrochemical measurements were performed on a CHI 660E electrochemical workstation system in a three electrode system. Hg/HgO electrode and a Pt wire were used as reference electrode and counter electrode, respectively. In briefly, 10 mg of catalyst was ultrasonically suspended in 1 mL ethanol and 50 μ L 5 wt.% Nafion solution for 30 min, then 6 μ L slurry was coated on the surface of glassy carbon (GC) electrode, resulting in a catalyst loading of 0.455 mg cm⁻². Commercial 20 wt.% Pt/C (Johnson Matthey) was used for comparison with the same powder loading.

The cyclic voltammetry (CV) tests were performed over the potential range of 0.5 to -0.8 V vs. Hg/HgO at a scan rate of 100 mV s⁻¹. Rotating disk electrode (RDE) measurements were carried out in O₂-saturated 0.1 KOH solution at a scan rate of 10 mV s⁻¹, with the electrode rotating at 400, 900, 1600 and 2500 rpm. The ORR polarization curves were corrected by subtracting background current measured under N₂ atmosphere. The transferred electron number was calculated from the Koutecky-Levich equation:

$$\frac{1}{J} = \frac{1}{J_k} + \frac{1}{J_d} = \frac{1}{J_k} + \frac{1}{B\omega^{1/2}}$$

 $B = 0.62 n F C_o D_o^{2/3} v^{-1/6}$

Where J is the measured current density, J_k and J_d are the kinetic and diffusion limited current densities, respectively; F is the Faraday constant, n is transferred electron number, C_o is the saturated concentration of oxygen, D_o is the diffusion coefficient of oxygen and v is kinematic viscosity of the electrolyte [13]. For the OER test, the working electrode was scanned from 0 to 1.0 V vs. Hg/HgO at a scan rate of 10 mV s⁻¹ in N₂-saturated 0.1 KOH with the electrode rotated at 1600 rpm.

Results and discussion

Fig. 1a shows the XRD patterns for $Ag-CoFe_2O_4/C$, Ag/C and $CoFe_2O_4/C$. For all samples, there was a broad peak at about 25.0°, which is attributed to the graphite (002) of carbon [32]. Similar to the CoFe₂O₄/C sample, the synthesized Ag–CoFe₂O₄/C exhibits five weak broad peaks located at 30.1°, 35.4°, 43.1°, 56.9° and 62.6°, which are indexed to the (220), (311), (400), (511) and (440) crystal facets of cubic spinel CoFe₂O₄ (PDF#22-1086). Moreover, the composite catalyst also exhibits other sharp diffraction peaks located at 38.1°, 44.3°, 64.4° and $77.5^\circ,$ respectively. The positions of these peaks were coincident with those of the pure Ag/C, implying the presence of Ag phase in the material simultaneously. It can be found that the position and intensity of peaks for CoFe₂O₄ in the composite are similar to those of CoFe₂O₄/C. Only the intensity of peak recorded at 43.1° decreased (Fig. 1b). It may be attributed to the overlap of diffraction peaks of CoFe₂O₄ and Ag. The results indicate that the material is composed of both Ag and CoFe₂O₄.

 $Please cite this article in press as: Wang Y, et al., One-pot synthesis of Ag-CoFe_2O_4/C as efficient catalyst for oxygen reduction in alkaline media, International Journal of Hydrogen Energy (2016), http://dx.doi.org/10.1016/j.ijhydene.2016.05.287$

Download English Version:

https://daneshyari.com/en/article/5147272

Download Persian Version:

https://daneshyari.com/article/5147272

Daneshyari.com