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This work presents an element addition strategy for 3D compliant mechanisms design. The proposed

procedure is based on an extension of the evolutionary structural optimization (ESO) method, which

has been successfully applied to several optimum material distribution problems, but not for 3D

compliant mechanisms optimization.

Even if most investigations for compliant mechanism design have been oriented for planar systems

design, this technology may be useful also for 3D mechanisms design, for instance in making devices for

micro- and nanomanipulation, like the popular hexapods mechanisms used for six axis positioning.

These 3D structures and mechanisms (rigid or compliant) must be carefully manufactured and

assembled from many precision components, and there are still many aspects that must be examined to

accomplish the topology optimization and ensure the performance of these precision manipulators. The

present paper aims to progress on this line, and will apply an alternative approach derived in this

investigation, which improves the solutions obtained by this specific method. The proposed method has

been tested in several numerical applications and benchmark examples to illustrate and validate the

approach, and satisfactorily applied to the solution of 3D examples.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Compliant mechanisms obtain their mobility from flexibility of
their parts, in contrast with traditional mechanisms made of rigid
counterparts, where mobility is obtained from hinges, bearings or
sliders. As a result, compliant mechanisms can be built using
fewer parts, require fewer assembly processes and need no
lubrication. An important application of compliant mechanisms
lies in Micro Electro Mechanical Systems (MEMS) design, where
due to the small size, hinges and bearings cannot be used due to
friction problems that would dominate at the small scale.
Therefore these types of mechanisms must be built and designed
as compliant mechanisms etched out of a single piece of material.

Topology optimization has been successfully applied to
optimize compliant mechanisms in many practical engineering
designs with the use of finite element analysis, since this
technique enables systematic design directly from the behavioral
specifications. This method is able to allow for a change in the
number and position of elements, because holes may be added or
deleted to modify the connectivity of the structure during the
course of the optimization problem without relying on an
intuitive initial design. The structural topology design problem
is formulated as a material distribution problem within a given

design domain, where material should be placed and connected to
some portions of the boundary with some number of holes inside
to optimize an objective function. The design goals for structures
and compliant mechanisms are quite similar, and the same
topology optimization methods may therefore be adapted to
design both types of elements. To realize such a design
methodology, formal techniques of structural optimization are
adopted but the design goals were modified specifically to suit
the functional requirement of compliant mechanisms. Although
the intended functions of compliant mechanisms and stiff
structures are inherently different, structural optimization algo-
rithms can be used for the synthesis of compliant topologies.
A fundamental difference in the two design problems is that in
compliant mechanisms, adequate flexibility is deemed essential
for their structural reconfiguration to afford the required
displacement at the point of interest. Additionally, a compliant
mechanism also needs to be stiff enough to be able to sustain
external loads. Thus, there are two design objectives to be met
simultaneously when designing a compliant mechanism. The
most used objectives in compliant mechanisms synthesis are the
geometrical and mechanical advantages, which describe the ratios
between output and input port displacements and forces,
respectively. Furthermore, even if a simplified lineal analysis
may be used as a first step into compliant mechanisms design,
one must be aware of the limitations that such modelling imposes
and the use of geometrically nonlinear finite element analysis
becomes essential in this type of optimization.
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The pioneering numerical implementation of the material
distribution idea based on homogenized materials for finding the
optimal topology of a structure was first described by Kikuchi and
Bendsoe [1], treating the reference domain as if it was made of
composite material consisting of a solid and void periodic
microstructure. The idea of using a penalized variable density
approach (SIMP) for numerically approximating a material-void
design problem was first tested in Bendsoe [2] and Rozvany et al.
[3]. This possibility has proven very popular and extremely
efficient, where a density variable is associated with each finite
element and exponential law is applied to compute effective
properties (E¼E0rp), where E0 denotes de isotropic material
elastic modulus, r is the density and p represents de penalization
factor. It was not originally intended to correspond to a physical
microstructure but recently it was concluded that there exist
real microstructures for SIMP functions with a suitably chosen
exponent [4]. Since the beginning of the 1990s, several new
methods have emerged, which can be used alongside traditional
methods to complement them. Among these methods, a number
of heuristic or intuition based methods have been proposed to
minimize compliance or other objective functions, like genetic
algorithms [5], which show to become prohibitively expensive for
large systems, or the evolutionary method, also known as
evolutionary structural optimization (ESO) [6], although a more
appropriate term for this method would be sequential element
rejections and admissions technique, suggested by Rozvany et al.
[7]. The recently developed level-set method, originally
introduced by Osher and Sethian for numerically tracking fronts
and free boundaries[8], has been successfully used in the field of
optimization[9] and seems to be tremendously promising, even if
it still is in its early stages.

In the field of compliant mechanisms topology optimization
for continuum synthesis approach, the first applications appeared
in Ananthaturesh et al. [10]. A later approach by Sigmund [11]
modelled the output load by a spring that captures the nature of
the workpiece held at the output port of the compliant
mechanism and allows control of the input–output behavior
using the mechanical advantage as objective function. An
equivalent but different approach is based on the maximization
of the ratio of two mutual energies, where two different finite
element problems are considered [12]. The main differences
between the above mentioned topology optimization approaches
consist mainly in the formulations of the optimization problem
and the ‘‘best’’ formulation probably still remains to be defined.
Also Frecker et al. presented the synthesis of compliant topologies
with multiple input and output ports, using as objective function
a combination of the mechanical and geometrical advantage of
the mechanism [13]. Path generating mechanisms have been also
treated in the work by Saxena and Ananthaturesh [14], as well as
compliant thermal microactuators topology optimization [15].

Concerning the parameterization methods employed for the
solution of the topology optimization problem for compliant
mechanisms, we can cite the microstructure based homogeniza-
tion method [16], the SIMP interpolation [17], the level-set
method [18] or a simple version of the ESO method, successfully
applied by this research group for planar compliant mechanisms
design [19]. Progressing in this line of work, this paper presents an
enhanced and more general additive version of this method for 3D
compliant mechanisms design, which is quite difficult to find in
topology optimization literature [20] but may become very useful,
for instance in conceiving mechanisms like compliant hexapods
for micro- and nanomanipulation or complex positioning
processes [21]. Even if the validity of the ESO method has been
examined critically and several arguments have been made
against it, since it may lead to highly nonoptimal solutions in
the same circumstances and presents some drawbacks compared

with other methods, this paper shows that actually it can be used
for 3D compliant mechanisms topology design by means of an
additive version of the method. Here an alternative mechanical
advantage based objective function is applied, which allows to
find the optimum design very efficiently when this method is
applied. The unwanted formation of checkerboard patterns is
prevented by the classical smoothing technique frequently
adopted when evolutionary topology optimization is applied.
This paper presents also an enhanced variable smoothing
technique to circumvent these numerical problems, especially
critical when dealing with 3D problems. The procedure has been
implemented as part of a general optimization computer program
called Odessy [22] and tested in several numerical applications
and benchmark examples to validate the approach.

2. Topology optimization problem for compliant mechanisms
design

Consider a linear elastic body occupying three dimensional
domain O where the mechanism is assumed to lie, with given
loading and boundary conditions shown in Fig. 1a, where P1 is the
input force, and uout is the expected output displacement.
Displacements at the input and output ports of the compliant
mechanism can be found by discretizing it using finite elements
and solving equilibrium equations for two load cases. The first
load case consists of the actual input load P1 and the second case
load is a unit dummy load applied at the output port in the
direction of the desired displacement (see Fig. 1b). First, the
equilibrium problem must be solved for each case:

Ku1 ¼ f1, Ku2 ¼ f2 ð1Þ

where K is the global stiffness matrix of the structure, u1 and u2

the nodal displacement vector due to the input and unit dummy
load and f1 and f2 the nodal force vectors containing the input and
dummy force. Once displacements are computed, uij

displacements can be obtained as

u11 ¼ uT
1Ku1=p1, u12 ¼ uT

2Ku1=p1

u22 ¼ uT
2Ku2=p2, u21 ¼ uT

1Ku2=p2
ð2Þ

where indices ij indicate displacement at port i due to a load at
port j. In this work mechanical advantage is posed as objective
function, that is, the ratio of induced output force to input force, a
functional specification frequently used for many mechanisms
design like, for instance, crunching or gripping mechanisms. This
ratio depends on the stiffness of the elastic workpiece that fills the
gap under the output force, shown in Fig. 2a, and modelled by a
spring with stiffness ks. Fig. 2b shows the load in the input port
and the reaction force at the output port. By means of the
reciprocity theorem we have the following relationship:

u12p1þu22R¼ uoutp2 ð3Þ

where R denotes the reaction force in the spring and is related
with the displacement at the output port, uout, which can be
written as

u12p1�kSuoutu22 ¼ uoutp2-uout ¼
u12p1

p2þkSu22
ð4Þ

Using this expression to formulate the mechanical advantage
we get the same equation obtained by Sigmund [11]:

M¼
Fout

Fin
¼

kSuout

p1
¼

kS

p1

p1u12

p2þkSu22
¼

u12
p2

kS
þu22

¼
1

p1

u21
u22
p2
þ 1

kS

ð5Þ

where the displacements shown in this equation can be found
using equations in (2). Additionally, practical limits on the
input displacement are usually introduced, i.e. uinrumax

in . This
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