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a b s t r a c t

Dynamic analysis is presented for simply supported laminated cylindrical shell with orthotropic layers

bounded with piezoelectric layers, subjected to local ring/pinch loads. The piezoelectric layers serve as

sensor/actuator. The governing elasticity equations are reduced to ordinary differential equations by

means of trigonometric function expansion. The resulting equations are solved by Galerkin’s finite

element in radial direction. The static results are compared with similar ones. The convergence is

studied and natural frequencies are obtained. The radius to thickness ratio and band load width effect

on dynamic behaviour is studied. Time responses for actuated shell are presented for different shell

laminations.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Smart structures equipped with piezoelectric materials have
been widely used as distributed sensors and actuators in the area of
active structural control. On the other hand, lightweight high-
modulus laminated shells of revolution have found extensive
applications. Therefore, shell-type smart structures containing
piezoelectric layers have been focused. Accurate prediction of their
dynamic behaviour demands three-dimensional elasticity based
numerical tools. These solutions are needed to assess the accuracy of
approximate shell theories. The basic theories for the modeling of
piezoelectric materials have been given in many contributions, in
particular in the pioneering works of Tiersten [1]. System equations
for piezoelectric shell vibrations were derived, using Hamilton’s
principle and linear piezoelectricity [2]. Many researchers have
studied the free vibration of laminated cylindrical shells. Civalek [3]
carried out the free vibration analysis of laminated cylindrical shell,
using Love’s first approximation thin shell theory and discrete
singular convolution (DSC) method. Hussein and Heyliger [4]
analysed the free vibration of laminated cylindrical shell with
piezoelectric layer by means of a discrete layer shell theory and
finite element method. The coupled displacement and electrical field
equations were derived for a piezoelectric cylindrical shell, based
on third order shear deformation theory by PintoCarreia et al. [5],
the equations were solved by finite element method. An exact

three-dimensional solution for static response of a simply supported
laminated piezoelectric cylinder was presented by Heyliger [6]. The
exact solution for simply supported multilayered orthotropic
cylindrical shell with finite length and piezoelectric layer as sensor
and actuator subjected to axisymmetric thermo-electro-mechanical
loading was considered by Chen and Shen [7]. Kapuria et al. [8]
studied the exact solution for cylindrical piezoelectric shell under
various static loads. Chandrashekhara and Nanjunda Rao presented a
three-dimensional elasticity solution for an infinite laminated
circular cylindrical shell subjected to banded and distributed pinch
static loads [9]. Analytical solutions to the radial polarized, piezo-
electric thin cylindrical shell based on Kirchhoff’s hypo-thesis
expressing the axial and radial components of displacement in
terms of exponential terms were presented by Ebenezer and
Abraham [10]. Shakeri et al. [11] obtained the dynamic response
of laminated anisotropic cylindrical panels subjected to dynamic
load based on 3D elasticity solution. The 3D-elasticity analysis of
laminated cylinder with piezoelectric sensor and actuator layers was
presented by Shakeri et al. [12]. A finite element formulation using
the layerwise theory, developed for laminated cylindrical shell with
piezoelectric layers subjected to dynamic load, besides the 3D
elasticity solution has been studied [13]. The elasticity solution for
simply supported, laminated cylindrical shell with piezoelectric
layer subjected to dynamic load has been presented by the authors
[14]. The resulting equations are solved by Galerkin’s finite element
in radial direction.

Recently a finite element formulation based on the first order
shear deformation theory is presented to model the dynamic
response of laminated composite shells containing piezoelectric
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sensors and actuators subjected to electrical, mechanical and
thermal loadings [15]. Negative velocity feedback control algo-
rithm is used to actively control the dynamic response of
structure.

In the present work, the elasticity solution of cross-ply
laminated cylindrical shell with piezoelectric layer, subjected to
dynamic local loading is presented. The cylindrical shell with
finite length is simply supported at both ends and elasticity
approach is used. The highly coupled partial differential equations
are reduced to ordinary differential equations by means of
trigonometric function expansion in plane directions. The result-
ing equations are solved by finite element method. Stress analysis
and vibrational behaviour are presented for different shell
thicknesses and are compared for different ring loads widths.

2. Problem formulation

The linear constitutive equations for a piezoelectric material
are given as follows [2]:

s¼ Ce�eT E, D¼ eeþZE ð1Þ

where the superscript T denotes the transpose of a matrix. The
components of stress (s), strain (e), electric field (E) and electric
displacement vector (D) are given in cylindrical coordinate system
(r, y, z), as follows:

s¼ ½sr sy sz tyz trz try �
T , E¼ ½ Er Ey E

z
�T

e¼ ½ er ey ez gyz grz gry �
T , D¼ ½Dr Dy Dz �

T ð2aÞ

The matrices [C], [e] and [Z] denote, respectively, the elastic
stiffness, piezoelectric and dielectric constants of the orthotropic
piezoelectric material layer which are as follows:

½C� ¼

c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0
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ð2bÞ

Piezoelectric material with hexagonal symmetric structure
exhibits transverse isotropic behaviour relative to its polarization
axis. The three-dimensional equations of motion in the absence of

body force are
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The charge equation of electrostatics is given by Tiersten [1]

@Dr

@r
þ

Dr

r
þ
@Dy

r@y
þ
@Dz

@z
¼ 0 ð3bÞ

The strain–displacement and the electric field–electric poten-
tial relations of the piezoelectric medium are written as
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By combining Eq. (4) with Eq. (1), the stress and electrical
displacement component will be obtained as follows:
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The other components are derived in the same way. After
substituting these components into Eq. (3) and factorizing the
similar u’s, the governing equations of equilibrium in terms of
displacement and electric potential for each layer of cylindrical

Notations

A,B, . . . ,E
000

constant coefficients derived in elastic solution
cij (i,j¼1y6) elastic constants
Eii (i¼r,y,z) elastic modulus
H thickness of the shell
L length of shell
R radius of the shell
ur, uy, uz radial, circumferential, axial displacement compo-

nents
[e] piezoelectric coupling constants matrix
[Z] dielectric constants matrix
Di (i¼r,y,z) electric displacement components

Ei (i¼r,y,z) electric field components
c electric potential
Po maximum applied load
Dx width of the band load
Vout applied voltage to the actuator
M, N number of Fourier terms
fUrðtÞg fUyðtÞg fUzðtÞg fCðtÞg
� �e

degree of Freedom vector
{N} shape function vector
fi (i¼r,y,z) generalized coordinates for displacement
r density of shell material
lmn Eigen values of the shell vibration
o natural frequency (rad/s)
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