international journal of hydrogen energy XXX (2016) 1–11

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Engineered polypeptide around nano-sized manganese—calcium oxide as an artificial water-oxidizing enzyme mimicking natural photosynthesis: Toward artificial enzymes with highly active site densities

Mohammad Mahdi Najafpour ^{a,b,**}, Sepideh Madadkhani ^a, Zahra Zand ^a, Małgorzata Hołyńska ^c, Suleyman I. Allakhverdiev ^{d,e,f,*}

^a Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran ^b Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

^c Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße, D-35032 Marburg, Germany

^d Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences,

Botanicheskaya Street 35, Moscow 127276, Russia

^e Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia

^f Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia

ARTICLE INFO

Article history: Received 27 May 2016 Received in revised form 29 June 2016 Accepted 4 July 2016 Available online xxx

Keywords: Artificial enzyme Engineered polypeptides

ABSTRACT

** Corresponding author. Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran. E-mail addresses: mmnajafpour@iasbs.ac.ir (M.M. Najafpour), suleyman.allakhverdiev@gmail.com (S.I. Allakhverdiev). http://dx.doi.org/10.1016/j.ijhydene.2016.07.024

0360-3199/© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Najafpour MM, et al., Engineered polypeptide around nano-sized manganese—calcium oxide as an artificial water-oxidizing enzyme mimicking natural photosynthesis: Toward artificial enzymes with highly active site densities, International Journal of Hydrogen Energy (2016), http://dx.doi.org/10.1016/j.ijhydene.2016.07.024

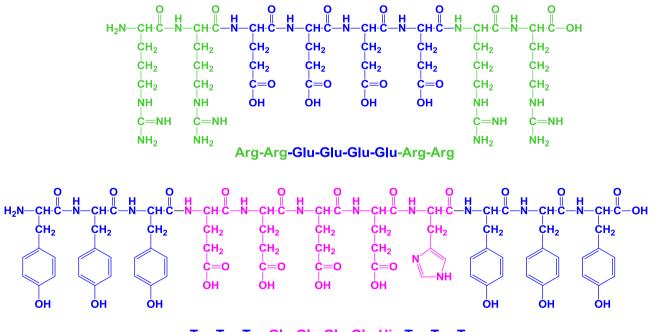
Abbreviations: PSII, Photosystem II; P680, Photosystem II reaction center chlorophyll; Y_z, (tyrosine 161); His190, Histidine 190; Arg357, Arginine 357; Glu, Glutamic acid.

^{*} Corresponding author. Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia. Fax: +7 496 7330 532.

Electrochemistry Nano-sized manganese oxide Water-oxidizing enzyme Hydrogen production Mn(III)/Mn(IV) oxidation on Mn–Ca oxide and it is decreased in the presence of the polypeptide. We also found that the peptide has an important role on morphologies of Mn–Ca oxide.

© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction


The water oxidation, which occurs in oxygenic photosynthesis, is the main source of the atmospheric oxygen and the Mn₄CaO₅ cluster in Photosystem II (PSII) which is the only known water-oxidizing enzyme in Nature [1-3]. Recently, Shen's group reported the crystal structure of the Mn-Ca cluster at 1.9 Å resolution [1-3]. The Mn₄CaO₅ cluster is surrounded by a protein environment. Seven amino acid-side chains are coordinated to the Mn₄CaO₅ cluster, of which six are carboxylate residues and one is an imidazole residue [1–3]. These amino acids and terminal water ligands are coordinated to Mn(III) or (IV) and Ca²⁺ ions, constitute an environment for the Mn-Ca cluster [1-3]. In addition to it, other amino acid residues are H-bonded to oxo-bridged oxygen atoms of Mn-Ca cluster [1-3]. Hydrogen bonds to the oxo-bridges involving two positively charged residues (Arg357 and His337) provide an important role for stability, proton transfer and the flexibility of the Mn-Ca cluster to undergo structural changes during the catalytic cycle (S-state transition). The distorted chair form of the cluster with high

flexibility can be important for the water-oxidizing activity [1–3].

Inspired by Nature, designed efficient catalysts for water oxidation have been reported by different groups [4–10]. Among many metal oxides, Mn oxides are promising as catalysts for water oxidation because they are low-cost, nontoxic, stable, and environmentally friendly [5–28]. Glikman and Shcheglova first reported on water-oxidizing activity of MnO_2 in the presence of ceric perchlorate [20]. The Morita's group investigated electrochemical water oxidation of MnO_2 [21]. Harriman's experiments showed that Mn(III) oxide is an efficient catalyst for water oxidation in the presence of Ce(IV) or $Ru(bpy)_3^{3+}$ as chemical oxidant [22].

Najafpour and Kurz, inspired by the Mn–Ca cluster structure in PSII, synthesized a new Mn–Ca oxide catalyst by oxidation of Mn^{2+} ions in the presence of KMnO₄ [14].

The Mn_4CaO_5 cluster in PSII is surrounded by specific protein environment. Such organic matrix is believed to improve buffering and stabilize environmental conditions for the water-oxidizing activity of the Mn_4CaO_5 cluster [1–3]. Among these amino acid residues, tyrosine 161 (Y_Z) functions as a mediator of the electron transfer between the Mn_4CaO_5

Tyr-Tyr-Tyr-Glu-Glu-Glu-His-Tyr-Tyr

Scheme 1 – Schematic structure of the engineered polypeptides used to obtain the title catalysts.

Please cite this article in press as: Najafpour MM, et al., Engineered polypeptide around nano-sized manganese—calcium oxide as an artificial water-oxidizing enzyme mimicking natural photosynthesis: Toward artificial enzymes with highly active site densities, International Journal of Hydrogen Energy (2016), http://dx.doi.org/10.1016/j.ijhydene.2016.07.024

Download English Version:

https://daneshyari.com/en/article/5147529

Download Persian Version:

https://daneshyari.com/article/5147529

Daneshyari.com