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Abstract

The present paper deals with numerical developments performed in the finite element code ANSYS in order to produce coupled fluid–structure
dynamic analysis with pressure-based formulation, using modal and spectral methods. Enhancement of the modelling possibilities within the
ANSYS code is carried out with implementation of fluid–structure symmetric formulations for elasto-acoustic and hydro-elastic problems,
using the so-called symmetric (u, p, �) and (u, �, �) formulations. Using symmetric formulation enables linear dynamic analysis with modal
projection techniques for a fluid–structure coupled system. The paper briefly recalls the basic principles of such methods in the context of FSI.
Validation of the developments performed in the ANSYS code is exposed, focusing in particular on the calculation of effective mass for coupled
eigenmodes. Industrial application is also presented and gives a validation test case for modal and spectral methods with FSI modelling.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Dynamic response of linear systems subjected to dynamic
loading, such as shock or seism, with finite element procedures
is of paramount importance in many engineering applications
[1]. Taking fluid–structure interaction into account in such prob-
lems is made possible by the development of finite element or
boundary element methods [2].

Although such methods have been firmly validated from the
theoretical, numerical and even experimental points of view
[3,4], their application for design purposes is still not possible
with some industrial finite element codes.

In a previous paper [5], numerical enhancement of the finite
element code ANSYS, of wide use in academia and indus-
try, for finite element modelling of coupled fluid–structure sys-
tems has been exposed and validated. It has been highlighted
that the use of a newly implemented symmetric coupled for-
mulation instead of the non-symmetric coupled formulation
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currently available in the code made it possible to perform
coupled modal analysis on complex industrial problems with
reasonable computational time.

The present paper is devoted to validation of the use of these
symmetric formulations for the dynamic analysis of linear cou-
pled fluid–structure system, with modal methods. In Section 2,
a brief overview of various dynamic analysis methods is re-
called. In particular, the basic principles of spectral methods,
of wide use in seismic engineering [6], are exposed in the con-
text of fluid–structure system. Definition and properties of par-
ticipation factors and effective masses for coupled eigenmodes
are exposed and demonstrated. In Section 3, a brief outline
of the development of symmetric coupled formulations in the
ANSYS code is exposed. In Section 4, elementary test cases are
defined and validation is mainly concerned with the calculation
of eigenfrequencies and effective masses. Finally, an industrial
application is proposed in Section 5, to conclude validations of
the ANSYS code.

The paper also aims at providing users of the ANSYS
code—as well as other finite element codes—with test cases
to refer to, for the application of modal and spectral analysis
with FSI modelling. Applications of the methods exposed in

http://www.elsevier.com/locate/finel
mailto:jean-francois.sigrist@dcn.fr


288 J.-F. Sigrist, S. Garreau / Finite Elements in Analysis and Design 43 (2007) 287–300

the present paper cover a wide range of engineering problems
in nuclear, marine, aeronautic and automotive industries, for
instance for seismic and vibro-acoustic analysis.

2. Modal methods for dynamic linear fluid–structure
problems

2.1. Dynamic analysis of a linear system with time integration
methods

The problem of interest in the present paper is to com-
pute the response of a linear system subjected to an imposed
acceleration, such as a seism or a shock. The dynamic load
on the system is described by the acceleration profile �(t) in
a given direction D and the system response is defined by the
evolution of its degrees of freedom X(t) (e.g. in the context
of fluid–structure interaction problems, structure displacement
field and fluid pressure and displacement potential fields) in the
moving frame. M, C and K denoting, respectively, the system
mass, damping and stiffness matrices, the system dynamic is
described by the following equation [7]:

MẌ(t) + CẊ(t) + KX(t) = −MD�(t). (1)

2.1.1. Direct time integration methods
Computation of the system response can be performed with

direct time integration methods, i.e. solving Eq. (1) with finite
difference schemes, either with explicit [8] or implicit [9]break
approaches. As an example, an implicit finite difference scheme
is produced as follows. Using Taylor developments of displace-
ment X(t +�t) and velocity Ẋ(t +�t) leads to the finite differ-
ence approximation of the system acceleration Ẍk+1 = Ẍ(tk+1)

and velocity Ẋk+1 = Ẋ(tk+1) at time step tk+1 using the system
acceleration Ẍk = Ẍ(tk), velocity Ẋk+1 = Ẋ(tk+1) and displace-
ment Xk = X(tk) at the previous time step tk , according to:

Ẍk+1 = Xk+1 − Xk
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All terms in the right hand side of Eq. (4) are known quanti-
ties; computation of Xk+1 is straightforward and requires the

inversion of the matrix K̃ =M/��t2 + (C/��t)+K. For linear
problems, M, C and K are time independent, thus inversion of
K̃ has to be performed just once at the first time step of the
algorithm. This implicit method is the well-known Newmark
[10] scheme, which is implemented in the ANSYS code [11].

2.1.2. Modal time integration methods
Direct integration methods are rather time consuming, even

with computers nowadays and for rather simple finite element
models. It is then more efficient to use a projection of Eq. (1)
onto a suitable vector basis in order to solve a set of ordinary
differential equations [12]. Projection is made possible by ex-
panding the unknown problem X(x, t) as

X(x, t) =
∑
n>0

�n(t)Xn(x), (5)

where (Xn)n>0 is a vector basis and (�n)n>0 are the generalised
coordinates of vector X. The major interest of decomposition
(5) is to separate the time and space dependency of the system
degrees of freedom into the coordinates �n(t) on the one hand,
and the basis vector Xn(x) on the other hand.

The most appropriate vector basis is that of the system
eigenvectors, those latter being the solutions of the eigenvalue
problem:

(−	2
nM + K)Xn = 0 (6)

with 	n the eigenpulsation associated with eigenvector Xn.
When M and K are symmetric and positive definite ma-

trices, the eigenvectors are a basis of the problem unknown
vector space and comply with the following orthogonality
conditions:

XT
nMXn′ = �n,n′mn, XT

nKXn′ = �n,n′kn, (7)

where �n,n′ stands for the Kronecker symbol. mn and kn are
referred to as the modal mass and modal stiffness of eigenvector
Xn, respectively. The system dynamic behaviour can then be
viewed as the superposition of elementary mass-spring systems
with mass mn and spring stiffness kn, each system oscillating
at frequency fn, given by

fn = 1

2


√
kn

mn

. (8)

Substituting the modal decomposition (5) into Eq. (1), multi-
plying each term by XT

n and using the orthogonality conditions
given by Eq. (7) yields the following set of equations:

�̈n(t) + (XT
nCXn)

mn

�̇n(t) + 	2
n�n(t) = −�n�(t), (9)

where �n is the participation factor of eigenmode Xn, defined as

�n = XT
nMD

XT
nMXn

. (10)

The participation factor can be interpreted as a shape factor
which indicates how eigenmode Xn is to respond to the im-
posed acceleration in direction D: the higher �n, the greater
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