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Abstract

Recently, Coons’ interpolation was used for the construction of large finite elements with degrees of freedom appearing mostly along the
boundaries of a structure. In the regime of elasticity problems, these so-called “Coons-patch macroelements” were successfully applied to the
static analysis of plane structures [C.G. Provatidis, Analysis of axisymmetric structures using Coons’ interpolation, Finite Elem. Anal. Des.
39 (2003) 535–558.] while this paper continues the research by investigating their performance in the extraction of natural frequencies and
mode shapes. Apart from the piecewise-linear and cubic B-splines interpolation previously used, the performance of Lagrange polynomials
and the role of additional internal nodes is studied here. Relationships with classical Serendipity and Lagrangian type elements are discussed.
Moreover, the capability of Coons-patch macroelements to couple with conventional finite elements is investigated. The proposed method was
applied to three illustrative examples and it was successfully compared with conventional bilinear finite elements.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A lot of attempts have been made within the last years in or-
der to replace conventional finite element methods with other
methods such as the boundary element method (BEM) [1] or
mesh-free and meshless techniques [2–5]. Essentially, the main
practical need that justifies the relevant research activity is to
minimize data preparation cost (related to the time-consuming
mesh generation task) and to increase the accuracy in calcula-
tions by a simultaneous reduction of analysis effort. However,
so far BEM did not achieve to replace FEM in the regime of
dynamic analysis since its original formulation suffers from
frequency-dependent fundamental solutions. This fact leads to
a nonalgebraic problem while its alternative dual reciprocity
formulation (DR/BEM) [6] highly depends on the choice of the
radial basis functions or requires internal nodes [7–9]. More-
over, the mesh-free techniques are not always shortcomings-
free due to difficulties related to the inversion of the matrix of

∗ Tel.: +30 210 7721520; fax: +30 210 7722347.
E-mail address: cprovat@central.ntua.gr.

0168-874X/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.finel.2005.10.002

coefficients [10]. Therefore, the need of a robust and effective
computational technique is still timely.

During the last six years, the above thoughts have motivated
the author to develop a new method for the construction of
large finite elements with the nodal points along the boundaries
only. The background of the method is Coons’ interpolation,
a formula established in CAD-surface theory that was applied
to the automotive industry of USA since the middle 1960s. In
the framework of engineering analysis, this method has been
successfully applied mainly to potential [11–14] and recently
to static elasticity problems [15].

Since not adequate experience exists regarding the behavior
of Coons-patch macroelements (CPM) in elastodynamics, this
paper aims to further investigate their capability of solving
structural free vibration problems (eigenfrequency and mode
shape extraction) and compare with conventional FEM solu-
tions of the same boundary discretization. So far, the CPM
approach has been applied in conjunction with piecewise-
linear and cubic B-spline interpolation along the boundary of
an elastic structure. In addition to that, this paper extends the
latter interpolation to also Lagrange polynomials of which nu-
merical integration aspects and size limitations are discussed.
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Moreover, the necessity of using internal nodes is investigated
and a systematic procedure of dealing with them is proposed.

2. Formulation of Coons-patch macroelements (CPM)

2.1. Macroelements using only boundary nodes

As the basic theory has been previously presented [15],
in the sequence only the essential parts are outlined. Two-
dimensional CPM treat the entire problem domain, or a
large portion of that, as a four-sided patch ABCD on the
(x, y)-plane. The real patch is mapped to a reference patch
(�, �), where the normalized curvilinear coordinates vary
between 0 and 1 (0��, ��1) as shown in Fig. 1. Accord-
ing to Coons’ interpolation formula, each point x(�, �) =
{x(�, �), y(�, �)}T in the patch can be approximated by its
boundaries (x(�, 0), x(�, 1), x(0, �), x(1, �)) as follows:

x(�, �) = E0(�)x(0, �) + E1(�)x(1, �) + E0(�)x(�, 0)

+ E1(�)x(�, 1) − E0(�)E0(�)x(0, 0)

− E1(�)E0(�)x(1, 0) − E0(�)E1(�)x(0, 1)

− E1(�)E1(�)x(1, 1), (1)

where the blending functions can be chosen, for example, to
be linear as follows:

E0(�) = 1 − �, E1(�) = �,

E0(�) = 1 − �, E1(�) = �. (2)

Now, the idea of isoparametric elements is applied to Eq.
(1) for the interpolation of the displacement vector u(�, �) =
{u(�, �), v(�, �)}T within the patch, as follows:

u(�, �) = E0(�)u(0, �) + E1(�)u(1, �) + E0(�)u(�, 0)

+ E1(�)u(�, 1) − E0(�)E0(�)u(0, 0)

− E1(�)E0(�)u(1, 0) − E0(�)E1(�)u(0, 1)

− E1(�)E1(�)u(1, 1). (3)
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Fig. 1. Definition of a Coons-patch macroelement.

Let us assume that the sides AB, BC, CD and DA include
q1, q2, q3 and q4 nodes, respectively. Then, the total number
of nodes along the boundary of the patch becomes

qe = q1 + q2 + q3 + q4 − 4. (4)

If the boundary values u(�, 0), u(�, 1), u(0, �) and u(1, �)

in (3) are interpolated by any set of trial functions Bj (�̂) (�̂ is
either � or �; the upper index in Bj below corresponds to the
relevant side):

side AB : u(�, 0) =
q1∑

j=1

BAB
j (�) u(�j , 0),

side BC : u(1, �) =
q2∑

j=1

BBC
j (�) u(1, �j ),

side CD : u(�, 1) =
q3∑

j=1

BCD
j (�) u(�j , 1),

side DA : u(0, �) =
q4∑

j=1

BDA
j (�) u(0, �j ), (5)

and then Eq. (3) is collocated to all boundary nodes of the
reference macro-element, the global cardinal shape functions
Nj(�, �) within the Coons-patch can be finally constructed, so
that the solution u(�, �) is approximated by

u(�, �) =
qe∑

j=1

Nj(�, �) uj (t), (6)

with uj (t) denoting time-dependent displacement at nodal point
‘j ’, appearing at the boundaries of the macro-element. The
previous procedure leads to the following expressions for the
global shape functions:

(i) Corner nodes:

NA(�, �) = E0(�)BDA
q4

(�) + E0(�)BAB
1 (�) − E0(�)E0(�),

NB(�, �) = E1(�)BBC
1 (�) + E0(�)BAB

q1
(�) − E1(�)E0(�),

NC(�, �) = E1(�)BBC
q2

(�) + E1(�)BCD
1 (�) − E1(�)E1(�),

ND(�, �) = E0(�)BDA
1 (�) + E1(�)BCD

q3
(�) − E0(�)E1(�).

(7)

(ii) Interior nodes to AB (local numbering):

Nj(�, �) = E0(�)BAB
j (�), 2�j �q1 − 1. (8)

(iii) Interior nodes to BC (local numbering):

Nj(�, �) = E1(�)BBC
j (�), 2�j �q2 − 1. (9)

(iv) Interior nodes to CD (local numbering):

Nj(�, �) = E1(�)BCD
j (�), 2�j �q3 − 1. (10)

(v) Interior nodes to DA (local numbering):

Nj(�, �) = E0(�)BDA
j (�), 2�j �q4 − 1. (11)
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