EI SEVIER

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Stable, fast and high-energy-density LiCoO₂ cathode at high operation voltage enabled by glassy B₂O₃ modification

Aijun Zhou ^{a, *}, Weihang Wang ^a, Qin Liu ^a, Yi Wang ^b, Xu Yao ^a, Fangzhu Qing ^a, Enzhu Li ^a, Tingting Yang ^c, Long Zhang ^c, Jingze Li ^{a, **}

- ^a State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronics and Solid-state Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
- b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- ^c State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

HIGHLIGHTS

- LiCoO₂ powders are modified with glassy B₂O₃ through H₃BO₃ decomposition.
- High-voltage (4.5 V) cycling stability and rate capability are greatly improved.
- Lithium boron oxide (LBO) as major SEI part is formed on the surface after cycling.
- B₂O₃-modification mitigates high-voltage induced interfacial side reactions.
- The as-formed 3D glassy LBO enhances the kinetics of the electrode.

ARTICLE INFO

Article history: Received 1 May 2017 Received in revised form 7 June 2017 Accepted 15 June 2017

Keywords: Lithium-ion battery LiCoO₂ High voltage Cathode Surface modification Boron oxide

ABSTRACT

In this work, commercial LiCoO2 is modified with a glassy B_2O_3 by solution mixing with H_3BO_3 followed by post-calcination in order to enhance its high-voltage electrochemical performance. The glassy B_2O_3 coating/additive is believed to serve as an effective physiochemical buffer and protection between LiCoO2 and liquid electrolyte, which can suppress the high-voltage induced electrolyte decomposition and active material dissolution. During the early cycling and due to the electrochemical force, the as-coated B_2O_3 glasses which have 3D open frameworks tend to accommodate some mobile Li⁺ and form a more chemically-resistant and ion-conductive lithium boron oxide (LBO) interphase as a major component of the solid electrolyte interphase (SEI), which consequently enables much easier Li⁺ diffusion/transfer at the solid-liquid interfaces upon further cycling. Due to the synergetic effects of B_2O_3 coating/modification, the high-voltage capacity and energy density of the B_2O_3 -modified LiCoO2 cathode are promisingly improved by 35% and 30% after 100 cycles at 1 C within 3.0–4.5 V vs. Li/Li⁺. Meanwhile, the high-rate performance of the B_2O_3 -modified electrode is even more greatly improved, showing a capacity of 105 mAh g⁻¹ at 10 C while the bare electrode has dropped to no more than 30 mAh g⁻¹ under this rate condition.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The increasing demand for high-energy-density lithium-ion batteries (LIBs) has motivated huge efforts to explore high-performance electrode materials. Since commercialization of LIBs, LiCoO₂ has being dominating the cathode market due to its easy production and good cycling stability [1–4]. Though various new classes of materials have been developed in the last decades, LiCoO₂ still has vast superiority as small-format power units for portable devices considering its highest tapping density and maturity in

^{*} Corresponding author.

^{**} Corresponding author.

E-mail addresses: zhouaj@uestc.edu.cn (A. Zhou), 2496637025@qq.com (W. Wang), 214135373@qq.com (Q. Liu), wangyi4077@126.com (Y. Wang), 631763614@qq.com (X. Yao), qingfz@uestc.edu.cn (F. Qing), lienzhu@uestc.edu.cn (E. Li), 18712787539@163.com (T. Yang), lzhang@ysu.edu.cn (L. Zhang), lijingze@uestc.edu.cn (J. Li).

battery production among all candidates. As the base material of other layered cathodes and a classical model material for mechanism studies, $LiCoO_2$ has being receiving unfailing research interest in both experimental and theoretical aspects [5–11].

In recent years, the focus of research in LiCoO₂ has shifted to the application at high voltages [9], which can increase the degree of Li⁺ utilization in the lattice structure and thus push up the limit of its capacity and energy density. Previously, LiCoO₂ batteries were charged to a cut-off potential no more than 4.2 V vs. Li/Li⁺, delivering only half of its theoretical capacity (274 mAh g⁻¹) and energy density (~1000 Wh Kg⁻¹, estimated with a constant voltage of 3.9 V vs. Li anode). When the potential is elevated to 4.5 V, the initial discharge capacity and energy density of LiCoO2 can be increased to 190 mAh g^{-1} and 700 Wh Kg⁻¹ at 1 C (~70% utilization), which is very promising for next-generation applications. Unfortunately, pure LiCoO₂ is not stable and its rate capability also becomes very poor under such high-voltage conditions. Multiple reasons are believed to accounted for the high-voltage degradation of LiCoO₂, such as oxidization decomposition of the liquid electrolytes, structure collapse, Co⁴⁺ dissolution and oxygen release from the active materials, and fast accumulation of the so-called solid electrolyte interphase (SEI) which is electrochemically irreversible and kinetically unfavorable [12–14].

To address the high-voltage issues of LiCoO2, numerous attempts have been devoted which can be classified into three strategies: 1) using additives in electrolytes [15,16], 2) lattice element doping [11,17] and 3) surface coating/modification with another active/inactive materials [9,18–20]. In the aspect of surface coating, particular attention has been paid to the use of some large bandgap oxides such as Al₂O₃ [21–23], ZrO₂ [24], TiO₂ [22,25] and ZnO [26-28]. Take the most attractive Al₂O₃ coating that has been universally applied for many other electrode materials for example, the improvements of the cycling stability and rate performance of LiCoO₂ are mainly ascribed to the formation of a LiAlO₂-LiCoO₂ solid solution on the particle surface which can release elastic stains, provide Li⁺ pathways and avoid oxygen loss from LiCoO₂ [29–32]. In addition to the use of metal oxides, some solid electrolyte materials (e.g. Li₂CO₃ [33] Li₃PO₃ [34], LiPON [35] and Li₄Ti₅O₁₂ [36]) in polycrystalline or amorphous forms have also been used to modify LiCoO₂ taking advantages of their high electrochemical stability and ion-conducting property, the latter is supposed to be important to enhance the interfacial kinetics of LiCoO₂ electrode.

Compared with the numerous studies on metal oxide coatings, there are few reports regarding the use of non-metallic oxides for surface coating/modification of LiCoO2. B2O3 is an interesting candidate for study since it comes from the same group of Al₂O₃ and similarly has a large band-gap and high chemical stability in acid condition due to strong B-O bonding. B₂O₃ is normally known as a glassy material with 3D networks allowing the conduction of ions in it. This property makes it a very important solid electrolyte material, e.g. as a glass former in Li₂O-B₂O₃-P₂O₅ [37,38] or as a ionconduction promoter in LiTi₂(PO₄)₃ [39] and LiTiO₂ [40]. In the aspect of surface modification, Su et al. [41] reported effectively restricted sulfur or iodine dissolution in B2O3-modified Li-S and Li-I₂ batteries. B₂O₃ addition was also reported to be able to greatly influence the electrochemical performance of some carbon-based anodes (hard carbon [42,43], graphite [44] and graphene [45]) due to the change the electronic structure of these materials by partial B doping. Furthermore, the giant volume change in Si [46] and SnO₂-based [47,48] anodes can be well accommodated by B₂O₃ modification thanks to the 3D glassy feature of B₂O₃. Considering the high band-gap, high chemical stability and the 3D ion-conduction properties, B2O3 is supposed to be a promising surface modification material for addressing the high-voltage problems of LiCoO₂. Previously, B₂O₃ was used to modify LiCoO₂ through the solid-state synthesis and the electrochemical performance was studied with the cut-off voltage of 4.2 V [49]. However, there has been no report in literature regarding the high-voltage (>4.2 V) electrochemical performances of LiCoO $_2$ with B_2O_3 modification.

In this work, B_2O_3 -modified LiCoO $_2$ cathode materials are synthesized by a facial and scalable solution-mixing/post-calcination method using H_3BO_3 as the precursor modifier. The electrochemical performances of the B_2O_3 -modified electrodes are investigated at the cut-off potential of 4.5 V vs. Li/Li $^+$. It is found that both the cycling stability and the rate capability of the electrode are significantly improved by the B_2O_3 modification. The high-voltage induced side reactions at the electrode-electrolyte interfaces are effectively mitigated due to effective physiochemical protection from the B_2O_3 coating/additive. The enhancement of the rate capability is attributed to the electrochemical formation of a special glassy lithium boron oxide (LBO) interface as the major component of the SEI, which enables easier transfer of Li $^+$ and reduces the interfacial resistance during the long-term high-voltage cycling.

2. Experimental

2.1. B₂O₃-modification of LiCoO₂

1.5 g LiCoO₂ powders (99.9%, Hunan Changyuan Like Co., Ltd.) were put into a prepared transparent H_3BO_3 solution followed by strong stirring at room temperature (RT) for 1 h. The mixture was then heated to and slowly evaporated at 90 °C until a viscous slurry was formed, which was then dried at 80 °C in air for 12 h. Finally, the obtained product was calcined at 500 °C for 12 h in air in order to decompose the H_3BO_3 . For a comparative study, 1 wt. %, 2 wt. % and 3 wt. % H_3BO_3 (with respect to the weight of LiCoO₂) was employed and the resulted samples are named as LCO/BO1, LCO/BO2 and LCO/BO3, respectively. Additional LiCoO₂ powders were treated with all the same procedures only without the addition of H_3BO_3 and the obtained sample is named as LCO-bare as the reference.

2.2. Electrode preparation and cell assembly

The bare or B_2O_3 -modified LiCoO $_2$ powders were thoroughly mixed with acetylene black (AB) conductive additive and polyvinylidene fluoride (PVDF) binder with a weight ratio of 8: 1: 1 in N-methyl pyrrolidone (NMP). The slurry was homogeneously spread onto a piece of clean Al foil followed by vacuum-drying at 110 °C for 12 h. The electrode foil was punched into discs of 10 mm in diameter with a loading density of ~1.5 mg cm $^{-3}$. For electrochemical tests, CR2O32-type coin cells were assembled in an Arfilled glove-box using Li foil as the anode. Prior to the cell assembly, the electrodes and separators (polypropylene, Celgard 2400) were dried at 110 °C and 50 °C overnight in vacuum, respectively. 1 M LiPF $_6$ dissolved in a mixture of ethylene carbonate (EC), diethyl carbonate (DEC) and dimethyl carbonate (DMC) (1:1:1, v/v) was used as the liquid electrolyte.

2.3. Electrochemical tests

Galvanostatic charge/discharge tests of the half cells were performed using a CT2001A cell test instrument (LAND Electronic Co.) within 3.0–4.5 V vs. Li/Li $^+$ at RT. All cells were activated by a cycle of low-rate (0.2 C, 1 C = 140 mA g $^{-1}$) charge/discharge before the stability test at 1 C. The rate capability was tested stepwise from 0.02 C to 10 C and back to 0.02 C again. Cyclic voltammetry (CV) tests were carried out using an Arbin BT2000 equipment with a

Download English Version:

https://daneshyari.com/en/article/5148817

Download Persian Version:

https://daneshyari.com/article/5148817

<u>Daneshyari.com</u>