Journal of Power Sources 361 (2017) 21-30



Contents lists available at ScienceDirect

### Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

# Advanced bifunctional electrocatalyst generated through cobalt phthalocyanine tetrasulfonate intercalated Ni<sub>2</sub>Fe-layered double hydroxides for a laminar flow unitized regenerative micro-cell



Haihong Zhong <sup>a</sup>, Ran Tian <sup>a</sup>, Xiaoman Gong <sup>a</sup>, Dianqing Li <sup>a</sup>, Pinggui Tang <sup>a</sup>, Nicolas Alonso-Vante <sup>b, \*\*</sup>, Yongjun Feng <sup>a, \*</sup>

<sup>a</sup> State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China <sup>b</sup> IC2MP, UMR-CNRS 7285, University of Poitiers, F-86022 Poitiers Cedex, France

#### HIGHLIGHTS

- NiFeO<sub>x</sub>/CoN<sub>x</sub>-C electrocatalyst was derived from CoPcTs-intercalated Ni<sub>2</sub>Fe- LDH.
- It exhibits excellent ORR/OER bifunctional electrocatalytic activity and stability.
- It shows high performance in a H<sub>2</sub>-O<sub>2</sub> laminar flow unitized regenerative micro-cell.
- The strong synergistic effect exists between Co-N<sub>x</sub> and NiFeO<sub>x</sub> centers.

#### ARTICLE INFO

Article history: Received 3 March 2017 Received in revised form 18 June 2017 Accepted 19 June 2017

Keywords: Oxygen reduction reaction Oxygen evolution reaction Laminar flow unitized regenerative cell Layered double hydroxides Bifunctional electrocatalyst

#### G R A P H I C A L A B S T R A C T



#### ABSTRACT

We fabricated a NiFeO<sub>x</sub>/CoN<sub>y</sub>-C nanocomposite derived from CoPcTs-intercalated Ni<sub>2</sub>Fe-layered double hydroxides (Ni<sub>2</sub>Fe-CoPcTs-LDH), which served as high-efficiency, low-cost, and long-durability bifunctional oxygen electrocatalyst in half-cell, and a H<sub>2</sub>–O<sub>2</sub> laminar flow unitized regenerative micro-cell (LFURMC) in alkaline media. Based on the synergistic effect between Co-N<sub>y</sub> and NiFeO<sub>x</sub> centers, the non-noble hybrid catalyst NiFeO<sub>x</sub>/CoN<sub>y</sub>-C achieves a  $\Delta E_{(\eta \oplus jOER, 10 - \eta \oplus jORR, -3)} = 0.84$  V in alkaline solution, outperforming the commercial Pt/C, and very close to that of IrO<sub>x</sub>/C. In the fuel cell mode, the performance of NiFeO<sub>x</sub>/CoN<sub>y</sub>-C with the maximum power density of 56 mW cm<sup>-2</sup> is similar to that of Pt/C (63 mW cm<sup>-2</sup>) and IrO<sub>x</sub>/C (58 mW cm<sup>-2</sup>); in the electrolysis mode, the calculated maximum electrical power consumed on NiFeO<sub>x</sub>/CoN<sub>y</sub>-C (237 mW cm<sup>-2</sup>) is more than 3 times that on Pt/C (73 mW cm<sup>-2</sup>), similar with that of IrO<sub>x</sub>/C. More importantly, the NiFeO<sub>x</sub>/CoN<sub>y</sub>-C shows a remarkable stability in alternating modes in a LFURMC system.

© 2017 Elsevier B.V. All rights reserved.

#### 1. Introduction

Increasing inevitable global demands of energy have attracted

considerable attention on alternative energy harvesting technologies, conversion and storage systems with high efficiency, costeffective and environmentally friendly [1], such as, rechargeable metal-air batteries, unitized regenerative cells (URCs), and water splitting electrolyzers [2,3]. The oxygen reduction reaction (ORR) is the ubiquitous cathode reaction in fuel cells, while the oxygen evolution reaction (OER) is the anodic reaction in electrolyzers [4–6]. Thus, in these systems, the conversion between O<sub>2</sub> and H<sub>2</sub>O

<sup>\*</sup> Corresponding author.

<sup>\*\*</sup> Corresponding author.

*E-mail addresses:* nicolas.alonso.vante@univ-poitiers.fr (N. Alonso-Vante), yjfeng@mail.buct.edu.cn (Y. Feng).

is a rate determining step on oxygen electrodes. However, the intrinsic sluggish reaction kinetics, and large overpotential ( $\eta$ ) related to ORR and OER greatly hinder their development and commercialization. Up to now, the state-of-art catalyst for ORR consists of Pt-based materials [7–9], while Ru- and Ir-oxides are the best ones for OER. Theses catalysts show only moderate activity towards ORR or OER, that is why, Pt/Ir-IrO<sub>2</sub> [10], and PtIrRu [11] were investigated as bifunctional electrocatalysts. The scarcity of the precious metals, their prohibitive cost, and declining activity greatly hamper the practice for large-scale applications. Therefore, an efficient and stable bifunctional catalyst based on earth-abundant non-noble metals, is practically important for URCs, a promising energy storage system.

Layered double hydroxides (LDHs) compounds, one kind of twodimensional (2D) anionic clay materials with a general formula  $[M_{1-x}^{2+}M_{x}^{3+}(OH)_{2}]^{x+}[A_{x/n}]^{n-}mH_{2}O$  $M^{2+}/(M^{2+}+M^{3+}),$ (X = x = 0.2-0.33), has been largely investigated as alternative candidates or precursors for applications in energy storage and conversion [12,13], and catalysis [14,15], and as functional additives for polymers [16] due to adjustable chemical composition, exchangeable anions, and tunable charge density. In the LDHs, the high dispersion of  $M^{2+}$  and  $M^{3+}$  cations in the host sheets, and preferred orientation of exchangeable anions  $(A^{n-})$  in the interlayer region open new opportunities for LDHs as bifunctional oxygen electrode materials. Recently, various reports on mixed-metal oxide (MMO) nanocomposites by thermal treatment of LDH precursors have demonstrated promising OER performance in alkaline medium [12.17.18]. Also, cobalt phthalocyanine (CoPc) with a nitrogenlinked tetrameric diiminoisoindoline conjugated macrocycle is a well-known electrocatalysts for ORR [19,20]. Therefore, a novel strategy for exploring bifunctional electrocatalysts is developed by thermal treatment of intercalated structure LDH containing multiple different catalytic active species.

Herein, we report a new bifunctional electrocatalyst NiFeO<sub>x</sub>/ CoN<sub>v</sub>-C composite by simple calcination of Ni<sub>2</sub>Fe-CoPcTs-LDH precursor based on the intercalation of cobalt phthalocyanine tetrasulfonate (CoPcTs) into nickel-iron (Ni<sub>2</sub>Fe-LDHs), and investigated for the ORR and OER processes in KOH medium. The key aspects of this bifunctional electrocatalyst, for the reversible oxygen electrode, is the mutual incorporation of the ORR-active centres (CoN<sub>v</sub>) [21], and OER-active ones (spinel NiFe<sub>2</sub>O<sub>4</sub>) [22], Fig. 1, respectively derived from the interlayer CoPcTs<sup>2-</sup> anions and the nickel-iron host sheet in the same layered double hydroxide. Here, the intercalation of CoPcTs anions into the interlayer region of Ni<sub>2</sub>Fe-LDH favours to enhance the immobilization of CoPcTs. Particularly, the host sheet Ni<sub>2</sub>Fe-LDH and the interlayer CoPcTs anions are alternating, which aids to improve dispersion degree of two catalytic sites  $(CoN_v \text{ and } NiFe_2O_4)$  and then to increase the catalytic performance [15].

#### 2. Experimental

#### 2.1. Materials

All the chemicals (A.R. grade) were directly used as received. Carbon black was activated under nitrogen atmosphere at 400  $^\circ C$  for 4 h.

#### 2.2. Preparation of NiFeO<sub>x</sub>/CoN<sub>y</sub>-C bifunctional electrocatalyst

The NiFeO<sub>x</sub>/CoN<sub>v</sub>-C bifunctional electrocatalyst was prepared by calcination of Ni<sub>2</sub>Fe-CoPcTs-LDH precursor under nitrogen atmosphere at 600 °C for 3 h. The Ni<sub>2</sub>Fe-SDS-LDH composite was synthesized by using a method developed in the laboratory [23,24]. For example, a solution A  $(2:3, V_{ethanol}/V_{deionized water})$  containing 100 mL of 12.5 mmol Fe(NO<sub>3</sub>)<sub>3</sub>, 25 mmol Ni(NO<sub>3</sub>)<sub>2</sub> and 6.25 mmol sodium dodecyl sulfate (SDS), and a solution B consisting of 50 mL of 75 mmol NaOH were simultaneously added into a colloid mill at 5000 rpm for 5 min. Then the resulting suspension was moved into a Teflon-lined stainless autoclave, which was kept at 140 °C for 24 h. Ni<sub>2</sub>Fe-SDS-LDH sample was obtained after 5 centrifugation/washing cycles using deionized water and drying at 60 °C. Secondly, the Ni<sub>2</sub>Fe-CoPcTs-LDH precursor was obtained by dispersing 0.1 g Ni<sub>2</sub>Fe-SDS-LDH powder in 300 mL of CoPcTs solution (CoPcTs/Fe = 20, mol/ mol) at 80 °C under vigorous stirring for 24 h, washed using deionized water, and dried at 60 °C. Finally, the Ni<sub>2</sub>Fe-CoPcTs-LDH precursor (the loading amount of CoPcTs for the Ni<sub>2</sub>Fe-CoPcTs-LDH is 141  $\mu$ g/cm<sup>-2</sup>) was calcined at 600 °C under inert atmosphere with a ramp rate of 10 °C min<sup>-1</sup> to obtain NiFeO<sub>x</sub>/CoN<sub>v</sub>-C electrocatalyst.

#### 2.3. Physical-characterization

A Shimadzu XRD-6000 X-ray diffractometer was used to record powder X-ray diffraction (pXRD) patterns using Cu-K<sub>α</sub> ( $\lambda = 0.154$  nm) at a scanning rate of 10°/2θ min<sup>-1</sup> at 40 kV and 30 mA. A Vector 22 (Bruker) spectrophotometer was employed to collect the Fourier transform infrared (FT-IR) spectra by the KBr pellet technique from 4000 cm<sup>-1</sup>–400 cm<sup>-1</sup> with a resolution of 2 cm<sup>-1</sup>. A Zeiss Supra 55 scanning electron microscope (SEM) was applied to monitor the morphology and structure of the samples. A VG ESCALAB 2201 XL spectrometer was used to measure X-ray photoelectron spectroscopy (XPS). Nanofinder 3.0 Raman spectrometer (Tokyo Instrument) was employed to examine Raman spectra of these samples with a visible laser beam of 532 nm.

#### 2.4. Electrochemistry

#### 2.4.1. Electrochemical measurements in half-cell

All the electrochemical tests were carried out in a standard



Fig. 1. The chemical route to generate NiFeO<sub>x</sub>/CoN<sub>v</sub>-C electrocatalyst.

Download English Version:

## https://daneshyari.com/en/article/5148859

Download Persian Version:

https://daneshyari.com/article/5148859

Daneshyari.com