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Abstract

In this paper, a three-invariant cap plasticity is developed for description of powder behavior under cold compaction process. The con-
stitutive elasto-plastic matrix and its components are derived as the nonlinear functions of powder relative density. Different aspects of
2D and 3D cap plasticity models are illustrated and the procedure for determination of powder parameters is described. It is shown how
the proposed model could generate the elliptical yield surface, double-surface cap plasticity and the irregular hexagonal pyramid of the
Mohr–Coulomb and cone-cap yield surface, as special cases. The single-cap plasticity is performed within the framework of large finite
element deformation, in order to predict the nonuniform relative density distribution during powder die pressing. Finally, the applicabil-
ity of the proposed model for description of powder behavior is demonstrated in numerical simulation of triaxial and confining pressure
tests. The numerical schemes are examined for efficiency in the modeling of an automotive component, a conical shaped-charge liner and a
connecting-rod.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Powder pressing process is the main part of many powder
metallurgy manufacturing routes. The physical and mechanical
properties of powder metallurgy (PM) components are closely
related to their final density. Minimizing the density gradients is
an important consideration when high and consistent mechan-
ical performance is required. The final density is determined
by the press-and-sinter process parameters and by the material
characteristics and filling conditions. The density distribution
of the material in the as-poured condition has effects that are
propagated throughout the subsequent PM processes. Under-
standing and quantifying the main factors that influence the fill
density could be a platform for ‘tailoring’ the initial density in
the die.

Finite element simulations of the compaction process in
combination with appropriate material laws for the powder
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allow quantitative predictions of the tool loading, of the green
density distribution and of the sinter distortions. The analysis
of powder pressing requires accurate material models of the
various powder mixes that are used. Thus, an efficient and
reliable plasticity model will play an important role in powder
compaction simulation. The experimental results of Watson and
Wert [1] and Brown and Abou-Chedid [2] demonstrated that the
constitutive modeling of geological and frictional materials can
be utilized to construct the suitable phenomenological consti-
tutive models which capture the major features of the response
of initially loose powders to the complex deformation process-
ing histories encountered in the manufacture of powder com-
ponents. In particular, they suggested that a ‘two-mechanism-
model’, such as: Drucker–Prager or Mohr–Coulomb and
elliptical cap models, which exhibit pressure dependent be-
havior can be useful for modeling the response of powder
materials.

The cone-cap model based on a density-dependent
Drucker–Prager yield surface and a noncentered ellipse is
developed by Aydin et al. [3], Khoei and Lewis [4], Brandt
and Nilsson [5] and Gu et al. [6]. A double-surface plasticity
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model was developed by Lewis and Khoei [7] for the nonlin-
ear behavior of powder materials in the concept of the general-
ized plasticity formulation for the description of cyclic loading.
This model is based on the combination of a convex yield sur-
face consisting of a failure envelope, such as a Mohr–Coulomb
yield surface and a hardening elliptical cap. The model com-
prises two surfaces, one to reflect shear failure and the other
to capture densification. Recently, Khoei et al. [8,9] developed
a density-dependent endochronic theory based on coupling be-
tween deviatoric and hydrostatic behavior in finite strain plas-
ticity to simulate the compaction process of powder material.

Up to date, the most computational simulation of powder
compaction processes has been presented in two-dimensional
(2D) cases. A Lagrangian kinematic formulation was developed
by Oliver et al. [10] and Lewis and Khoei [11] to model the
2D multi-level components. The h-adaptive FE technique was
employed by Khoei and Lewis [12], in order to avoid the pro-
gressive mesh distortion during different stages of compaction.
An arbitrary Lagrangian–Eulerian approach was developed by
Rodriguez-Ferran et al. [13] and Khoei et al. [14] in 2D powder
forming simulation, as the adaptive mesh refinement was com-
putationally expensive and information had to be interpolated
from the old mesh to the new mesh. However, to the knowledge
of authors less numerical modeling has been reported in 3D
powder compaction simulation. Recently, the 3D compaction
simulations of geometries with circular and quadratic cross-
sections were performed by Cedergren et al. [15]. Also, a 3D FE
modeling of multi-level powder components was presented by
Khoei and Azizi [16] using a double-surface plasticity theory.

In the present paper, a generalized three-invariant single-cap
plasticity is developed for 3D simulation of powder forming
processes. The cap plasticity model is developed based on the
nonlinear functions of powder relative density. The constitu-
tive elasto-plastic matrix and its components are extracted. The
procedure for determination of powder parameters is described
and the applicability of the model is demonstrated in several
numerical examples.

2. Large finite element deformation

The nonlinearities in powder forming analyses arise from
two distinct sources; constitutive nonlinearities and geomet-
ric nonlinearities, the latter being due to large displacements.
Whether the displacements, or strains, are large or small it is
imperative that the equilibrium conditions between the internal
and external forces have to be satisfied. Thus, the equilibrium
equation of a body in a deformed configuration can be written
in a standard form as

�ij ,j + �bi = 0, (1)

where ui is the current displacement, bi is the body force, �
is the current density of powder and �ij is the total (Cauchy)
stress. The constitutive law with respect to the incremental
stress can be defined as

d�ij = Dijkl(d�kl − d�0
kl) + �ikd�kj + �jkd�ki , (2)

where dεij and d�kl are the incremental values of the strain
and rotation, respectively. The last two terms account for the
Zaremba–Jaumann rotational stress changes (negligible gener-
ally in small displacement computation). In Eq. (2), Dijkl is
a tangential matrix, defined by suitable state variables and the
direction of the increment, and �0

ij refers to strains caused by
external actions such as temperature changes.

For geometrically nonlinear behavior, we can select either a
total or an updated Lagrangian coordinate system. If the initial
undeformed position of a particle of material is x0 and the total
displacement vector is u then the coordinates of the particle
are x = x0 + u. A general definition of strains, which is valid
whether the displacements or strains are large or small, was
introduced by Green and St. Venant. Based on Green’s strain
tensor, the nonlinear strain displacement relationship can be
defined in terms of the infinitesimal and large displacement
components as

ε = εL + εNL = εL + 1
2A��, (3)

where εL and εNL are the linear and nonlinear strains and for
3D problems are defined as

εL =
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. (4)

In small displacement theory, the general first-order linear strain
approximation is obtained by neglecting the quadratic terms. In
Eq. (3), the nonlinear terms of strain εNL is defined as εNL =
1
2A��, with � denoting the displacement gradient and A� a
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