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HIGHLIGHTS

e A simplified combined electrochemical, heat generation and thermal model is proposed.
e Heat generation model that accounts for different loss mechanisms is developed.

e A real-time thermal model of a large format prismatic cells is proposed.

e Model parameterization under isothermal and non-isothermal operating conditions.

e Model validation using experimental data for broad C-rates, and temperature ranges.
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Real-time prediction of the battery's core temperature and terminal voltage is very crucial for an accurate
battery management system. In this paper, a combined electrochemical, heat generation, and thermal
model is developed for large prismatic cells. The proposed model consists of three sub-models, an
electrochemical model, heat generation model, and thermal model which are coupled together in an
iterative fashion through physicochemical temperature dependent parameters. The proposed parame-
terization cycles identify the sub-models’ parameters separately by exciting the battery under isothermal
and non-isothermal operating conditions. The proposed combined model structure shows accurate
terminal voltage and core temperature prediction at various operating conditions while maintaining a
simple mathematical structure, making it ideal for real-time BMS applications. Finally, the model is
validated against both isothermal and non-isothermal drive cycles, covering a broad range of C-rates, and
temperature ranges [—25 °C to 45 °C].
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1. Introduction

In the past decade, lithium-ion batteries have gradually gained
acceptance in the automotive sector as electric energy storage due
to their high specific energy, low self-discharge rate, and non-
memory effect. In order to efficiently integrate the lithium-ion
batteries in electric vehicles (EV), different cell sizes have been
introduced. Depending on the method of packing, the cells can be
shaped into a pouch, cylindrical, or prismatic form. Prismatic
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lithium-ion batteries have become one of the most attractive op-
tions for energy storage systems due to their optimal use of space
and light weight. However, abnormal operating conditions such as
over discharge, overcharge, or high operating temperature can
accelerate their aging and degradation and may lead to thermal
runaways in extreme cases. To fully benefit from a lithium-ion
energy storage system and avoid its physical degradation, an ac-
curate battery management system (BMS) is required. The BMS is
responsible for the battery state of charge (SOC), state of health
(SOH), state of power (SOP), and thermal management. It uses state
estimation algorithms for monitoring, as well as operating the
battery within a range that is considered as nominal in order to
ensure safety and performance as well as preserving its projected
useful life. One of the main requirements for a successful BMS
implementation is the development of a high fidelity battery model
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that includes thermal and aging dependent parameters. The battery
model needs to be dynamically significant while being computa-
tionally efficient, robust, and accurate. Of particular interest is the
prediction of the terminal voltage which is affected by the cell's
core temperature. As such, an accurate thermal model is needed to
predict the core temperature and estimate its dynamics. The in-
clusion of a thermal model within the overall battery model is
necessary as it enables the BMS to operate the battery safely and
preserve its performance effectively.

Battery models are broadly classified under three categories:
equivalent circuit [1—4], behavioral (or black-box) [5—8], and
electrochemical (physics-based) models [9—11]. The equivalent
circuit models are widely used in BMS due to their acceptable ac-
curacy, complexity, and fidelity. Most of the electrochemical
modeling approaches found in the literature are based on the
electrochemical pseudo-two-dimensional (P2D) model further
developed following the Doyle-Fuller-Newman model [12,13]. The
physics-based P2D model is very accurate; however, it is exces-
sively computationally complex, thereby burdening its real-time
implementation. Therefore, many model reduction methods have
been proposed to reduce its complexity while maintaining its ac-
curacy. The model reduction methods commonly used can be
divided into two categories. One category focuses on reducing the
computational complexity involved in solving the concentration of
lithium in the solid particles of the electrodes by either simplifying
the concentration profile or assuming it to be constant as presented
by Refs. [14—16]. Another category focuses on reducing the elec-
trochemical model as a whole, such as to avoid the solution of large
sets of differential-algebraic equations (DAEs) of the Li™ concen-
tration distribution and the potential distribution of the electrolyte
phase. Examples of the latter can be found in Refs. [17—19].

In order to investigate the dynamic behavior of the cell, two
main approaches are discussed in the literature: (i) electrochemical
impedance spectroscopy (EIS) and (ii) measurement of a voltage
response using controlled input currents and then applying opti-
mization techniques to determine the model parameters. The
general principle of the EIS method is to apply an input signal either
current (galvanostatic) or voltage (potentiostatic) and then mea-
sure the characteristic response of the cell which depends on the
cell impedance. In the scope of this publication, the model is
parameterized and validated using the second approach. The bat-
tery under test was subjected to charging, charge-sustaining and
charge-depleting phases at six different temperature in order to
determine the temperature dependency of the parameters. The
genetic algorithm (GA) was then used to optimize the model
parameters.

In addition, various strategies have been proposed in the liter-
ature for modeling the temperature profile inside a cell during its
operation. These include coupled partial differential equations
(PDE) models, linear parameter-varying state-space models, three-
dimensional Finite Element Analysis (FEA) models and relatively
simple lumped capacitance zero-dimensional thermal models.
Smyshlyaev et al. [20] proposed an analytic solution for solving the
thermal model PDEs. Whereas, Hu et al. [21] reduced the PDEs
computational complexity by fitting a more complicated compu-
tational fluid dynamics (CFD) model to a linear parameter-varying
state-space model. Guo et al. [22] presented a three-dimensional
FEA thermal model, while Baba et al. [23] developed a full 3D
thermal model that takes into account local heat generation and
the spatial dependencies to obtain a full 3D temperature distribu-
tion of the cell. The FEA thermal models are very accurate; however,
they require excessive computational power and specific material
properties, which limit their real-time implementation especially
when fluid dynamics are considered in the cooling process. Damay
et al. [24] developed a lumped capacitance, zero-dimensional

thermal model. The model included one heat capacitor coupled
with different modes of heat transfer throughout the cell to
represent the thermal behavior of a prismatic cell. Similarly, Forgez
et al. [25] employed the same technique for cylindrical cells using
two heat capacitors. Further to the above, the lumped capacitance
modeling approach will also be considered in this work due to its
low computational complexity and acceptable accuracy. An accu-
rate set of parameters is required for obtaining a high-fidelity
thermal model. The thermal parameters are either determined
analytically or experimentally. Lin et al. [26] used detailed infor-
mation about the material and geometry of the cell for analytically
determining the parameters. Perez et al. [27] used the least squares
optimization algorithms to fit the model to the experimental data.
Lin et al. [28] proposed an online estimation algorithm. Sastry et al.
[29] developed a surrogate-based modeling and dimension
reduction techniques to assess the role of design variables on
multiple competing objectives for a wide range of engineering
problems [30,31].

In this publication, an experimental method involving optimi-
zation will be used instead of the analytical methods as they suffer
from a high level of uncertainty.

This paper proposes three unique contributions for improving
battery modeling. The first contribution is a combined electro-
chemical, heat generation, and thermal model capable of accurately
predicting the cell's terminal voltage and core temperature. The
second contribution is an accurate yet computationally simple four-
node thermal model (4NTM). The 4NTM helps in estimating the
battery's core temperature leading to an increase in the terminal
voltage accuracy within a broad range of temperatures
[-25 °C—40 °C]. The four-node structure constitutes a reduced order
form that renders the model suitable for real-time applications. The
third contribution is a model parameterization scheme that allows
identification of each sub-model parameters separately.

1.1. Paper structure

In section 2, the combined electrochemical, heat generation and
thermal model is illustrated. Section 3, 4 and 5 presents the
reduced-order electrochemical model (ROM), the heat generation
model, and the thermal model respectively. In section 6, the
parameter identification procedure and the experimental setup are
explained. The ROM, 4NTM, and the combined ECHTM are then
validated using battery voltage, current, and temperature mea-
surements against different driving cycles. Finally, the conclusion,
results, and future work are presented.

2. The combined model

This sections will present the main contribution of this paper,
the formulation of a combined electrochemical, heat generation,
and thermal model (ECHTM) that allows the BMS to effectively
operate the battery in safe conditions and improve its terminal
voltage, SOC, and SOH estimation accuracy. Fig. 1 shows a schematic
representation of the combined ECHTM and its sub-models. The
combined ECHTM is capable of estimating the cell's SOC, terminal
voltage, and core temperature and it is divided into three different
sub-models. First, the electrochemical model estimates the cells’
terminal voltage V;, SOC, open circuit potential Uy, and Li-ion
concentration gradients Ci? as a function of the cell's core tem-
perature T, using physicochemical temperature dependent pa-
rameters. The cell's core temperature is calculated using a specific
thermal model and fed back to the electrochemical model as an
input. The heat losses are the most difficult elements to model due
to the nonlinear nature of the heat sources. Thus, a specific model is
developed for heat generation Qgen, Which computes reversible,
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