Journal of Power Sources 355 (2017) 98-133

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Review article

Recent progress in stabilizing hybrid perovskites for solar cell applications

Jianqing Chen ^{a, **}, Xin Cai ^a, Donghui Yang ^a, Dan Song ^a, Jiajia Wang ^a, Jinghua Jiang ^a, Aibin Ma ^a, Shiquan Lv ^b, Michael Z. Hu ^{c, ***}, Chaoying Ni ^{d, *}

^a College of Mechanics and Materials, Hohai University, Nanjing, 210098, PR China

^b Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, PR China

^c Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

^d Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA

HIGHLIGHTS

- Progress in stabilizing hybrid perovskite solar cells (PSCs) is reviewed.
- Key issues related to the stability of perovskite components are evaluated.
- Optimizing multiple factors associated with component structures is essential.
- Strategies for improving the stability of PSCs are discussed and summarized.

A R T I C L E I N F O

Article history: Received 27 January 2017 Received in revised form 5 April 2017 Accepted 7 April 2017

Keywords: Hybrid perovskite solar cell Stability Perovskite modification Interface engineering Protection layer Encapsulation Ion migration

G R A P H I C A L A B S T R A C T

ABSTRACT

Hybrid inorganic-organic perovskites have quickly evolved as a promising group of materials for solar cells and optoelectronic applications mainly owing to the inexpensive materials, relatively simple and versatile fabrication and high power conversion efficiency (PCE). The certified energy conversion efficiency for perovskite solar cell (PSC) has reached above 20%, which is compatible to the current best for commercial applications. However, long-term stabilities of the materials and devices remain to be the biggest challenging issue for realistic implementation of the PSCs. This article discusses the key issues related to the stability of perovskite absorbing layer including crystal structural stability, chemical stability under moisture, oxygen, illumination and interface reaction, effects of electron-transporting materials (ETM), hole-transporting materials (HTM), contact electrodes, ion migration and preparation conditions. Towards the end, prospective strategies for improving the stability of PSCs are also briefly discussed and summarized. We focus on recent understanding of the stability of materials and devices and our perspectives about the strategies for the stability improvement.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

* Corresponding author.

** Corresponding author.

*** Corresponding author.

E-mail addresses: chenjq@hhu.edu.cn (J. Chen), cni@udel.edu (C. Ni).

The research of hybrid inorganic-organic perovskites in photovoltaic and optoelectronic applications has been expanding exponentially [1]. The "gold triangle" of solar cells for commercial application is power conversion efficiency (PCE), cost, and stability.

List of abbreviations

2 AET	2 aminothanothiol
Z-AEI	
2D	two-dimensional
4-ABPAC	lbutylphosphonic acid 4-ammonium chloride
4-tBP	4- <i>tert</i> -butylpridine
5-AVA	5-aminovalenric acid
ALD	atomic laver deposited
AM_TiO	amine-mediated titanium subovide
DA	
BCb	bathocuproine
BDT	benzo[1,2-b:4,5:b']dithiophene
BT	2,1,3-benzothiadiazole
CA	cyclopropylamine
C13-FAS	triethoxy-1H.1H.2H.2H-tridecafluoro-n-octylsilane
CBL	cathode buffer laver
	chemical inhibition layer
	CulpSo
	Cullise
CIGS	CulliGase
CL	compact layer
ClB cells	cells with HTL prepared using chlorbenzene as solvent
ClF cells	cells with HTL prepared using chloroform as solvent
CN	1-chloronaphthalene
СТАВ	cetyltrimethylammonium bromide
CTE	coefficient of thermal expansion
aTiO	compact TiO
CHO ₂	compact mo ₂
Cupc	copper Phthalocyanine
CzPAF-Sł	3F (7-(9,9'-spirobifluorene-2-yl)- <i>N</i> -(7-(9,9'-
	spirobifluorene-2-yl)-9,9-dioctyl-9H-fluoren-2-yl)-
	N-(4-(9H-carbazol-9-yl)phenyl)-9,9'-dicotyl-9H-
	fluoren-2-amine)
DIO	18-dijodooctane
DMOAP	N N-dimethyl-N-octadecyl(3-aminopropyl)
DIVIONI	trimethowsilul chloride silane
חחח	dilatomumplomumplo
DPP	
DR31BD	I oligothiphenes containing a backbone structure of a
	benzodithiophene (BDT) unit as the central block
	and ethylrhodanine as the end group
DS	down shifting
DSSC	dye sensitized solar cell
EAI	ethylammonium iodide
FC	ethyl cellulose
ED4	enthylepediamine
	2.7 Di(N N dimethousehousehouse) N (2 athelikouse)
EH44	2,7-DI(N,N-dimethoxyphenylamino)-N-(2-ethylnexyl)
	carbazole
ETL	electron transport layer
ETM	electron-transporting materials
EVA	ethylene vinyl acetate
F4-TCNO	tetrafluoro-tetracyanoguinodimet-hane
F4TCNO	2.3.5.6-tetrafluoro-7.7.8.8-tetracyano-quinodimethane
FA	formamidine
FADDI-	NU_CU_NU_DU_
EEAL	111 trifuoro othul ammonium iodido
FEAI	
FF	nii factor
GO	graphene oxide
GO-Li	lithium-neutralized graphene oxide
H101	2,5-bis(4,4'-bis(methoxyphenyl)aminophen-4"-yl)3,4-
	ethylene dioxythiophene
HA	hydrazinium
HAT-CN	1458911-hexaazatriphenylenehexacarbonitrile
HS_Phrs	thials containing highly hydronhohic motifs ($HS_{-}C_{-}F_{-}$)
	hole transport laver
	hole transporting materials
HINI	noie-transporting materials
HTMs	hole transport materials

	HXRPES	hard X-ray photoelectron spectroscopy
	Jsc	short circuit current
	KEML	Kunudsen effusion mass loss
	KEMS	Knudsen effusion-mass spectroscopy
	Li-TFSI	lithium bis(trifluoromethylsulfonyl) imide
	LTO	lithium titanium oxide
	$m-Al_2O_3$	mesoporous Al ₂ O ₃
	$m-TiO_2$	mesoporous TiO ₂
	MA	methylammonium
	MAPbI ₃	CH ₃ NH ₃ PbI ₃
	mCVT	modified chemical vapor transport
	MOTPA	MeO-triphenylamine
	mp-GP	mesopours graphene/polymer
	MPSC	mesoporous perovskite solar cells
	MUTAB	11-mercaptoundecyl trimethylammonium bromide
	MW	microwire
	NC-TiO ₂	nano-columnar 1-dimensional TiO ₂ porous film
	NGONRs	nitrogen-doped graphene oxide nanoribbons
	NMP	<i>N</i> -methyl-2-pyrrolidone
	NPB	N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-
		4,4'-diamine
	NP	nanoparticle
	NPs	nanoparticles
	NRs	nanorods
	NTs	nantube arrays
	ODA-FeS	2 bi-functional octadecylamine-capped pyrite
	OPV	organic solar cells
	oxo-G1	oxo-functionalized graphene
	P3HT	poly(3-hexylthiophene-2,5-diyl)
	P3TAA	poly(3-thiophene acetic acid)
	PCE	power conversion efficiency
	PCBDAN	[6,6]-phenyl-C61-butyric acid 2-((2-dimethylamino)
		ethyl)(methyl)-amino-ethyl ester
	PCBM	[6,6]-pheynl-C ₆₁ -butyric acid methyl ester
	PDMS	polydimethylsiloxane
	PDMT	poly(3,4-dimethoxythiophene)
	PDMS	polydimethylsiloxane
	PDPP3T	poly(diketo-pyrrolopyrrole-terthiophene)
	PDPPDBI	E Poly[2,5-bis(2-decyidodecyi)pyrrolo[3,4-c]pyrrole-
		I,4(2H,5H)-dione-(E)- $I,2$ -di(2,20-ditniopnen-5-yi)
		ethenej
	PEDUI.P.	sulfonate
	DEI	suifoliate
	DEI	poly(ethyleneimine)
		poly(ethyleneglycol)
	DET	polyethylene terephthalate
	DEN_D1	poly[(9 9-bis(3'-(N Ndimethylamino) propyl)-2 7-
	1111-11	fluorene)_alt_2 7_(9.9_dioctvlfluorene)
	PhN2-1T	14-bis(4-sulfonatobutovy)benzene and thionhene
	1 III va-1 I	moieties
		D-T2) poly{IN N'-bis(2-octyldodecyl)-naphthalene-
	1(112120)	14.5.8-bis(dicarboximide)-2.6-divl]-alt-5.5'-
		2.2'-bithionhene}
	PMAA	nolv(methylmethacrylate)
	PSC	perovskite solar cell
	PSCs	perovskite solar cells
	PTAA	polytriarylamine
	PVA	polyvinyl alcohol
	PVP	polyvinypyrrolidone
	RGO	reduced graphene oxide

RH relative humidity

Download English Version:

https://daneshyari.com/en/article/5149111

Download Persian Version:

https://daneshyari.com/article/5149111

Daneshyari.com