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h i g h l i g h t s

� Li-S batteries differ to Li-ion batteries, and require specific state of charge estimation.
� We discuss the limitations of standard SoC estimation methods with Li-S.
� A set of applicable state-of-charge estimators for Li-S batteries is developed.
� The extended Kalman Filter (KF), unscented KF and Particle filter are applied.
� The performance of the applied recursive Bayesian filters is evaluated.
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a b s t r a c t

Lithium-sulfur batteries are now commercially available, offering high specific energy density, low
production costs and high safety. However, there is no commercially-available battery management
system for them, and there are no published methods for determining state of charge in situ. This paper
describes a study to address this gap. The properties and behaviours of lithium-sulfur are briefly
introduced, and the applicability of ‘standard’ lithium-ion state-of-charge estimation methods is
explored. Open-circuit voltage methods and ‘Coulomb counting’ are found to have a poor fit for lithium-
sulfur, and model-based methods, particularly recursive Bayesian filters, are identified as showing strong
promise. Three recursive Bayesian filters are implemented: an extended Kalman filter (EKF), an un-
scented Kalman filter (UKF) and a particle filter (PF). These estimators are tested through practical
experimentation, considering both a pulse-discharge test and a test based on the New European Driving
Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment
expected in the authors' target automotive application. It is shown that the estimators, which are based
on a relatively simple equivalent-circuitenetwork model, can deliver useful results. If the three esti-
mators implemented, the unscented Kalman filter gives the most robust and accurate performance, with
an acceptable computational effort.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Compared to today's widespread lithium-ion (Li-ion) battery
technologies, lithium-sulfur (Li-S) offers increased specific energy
storage capability [1]. A greater battery capacity is often advanta-
geous, particularly in applications such as electric vehicles, where it
can mitigate consumer concerns about driving range. Li-S batteries

also have significant benefits in terms of their wide operational
temperaturewindowand safety [2]. The fact that sulfur is abundant
and environmentally friendly is also attractive for large-scale cost-
driven consumer applications. Commercialization has been hin-
dered by the limitations of early-stage Li-S technologies such as
quick degradation and limited sulfur utilization [3]. In recent years,
considerable effort has been put into the exploration of Li-S's inner
cell mechanisms, resulting in enhanced understanding [4]. Com-
mercial cells are now available from suppliers such as OXIS Energy
[5] and Sion Power [6]. Although today's cells may not fulfil every
aspect of high automotive demands, they do open the opportunity
for practical application oriented research.

In order to use a battery in a practical application, it is necessary
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to have an appropriate battery management system (BMS). A key
function of the BMS is determining the remaining usable capacity
of the battery, i.e. estimation of the state of charge (SoC). This is
important for many reasons: the more accurately SoC is known, the
greater the proportion of a battery that can be potentially utilized
without fear of overcharging and over-discharging; for consumers,
it is often helpful to know how much battery life remains.

In the automotive sector in particular, there has been much
research on accurate and robust SoC estimation techniques for Li-
ion batteries, aimed at meeting the demanding requirements of
the automotive traction battery. Here, the batteries operate in an
environment with varying power loads, different operation tem-
peratures, noisy and crude measurements, and high safety re-
quirements [7]. For systems with limited computational power, the
SoC of a Li-ion battery can be estimated through the use of equiv-
alentecircuit-networks (ECNs) [8,9], which simulate the voltage
response of the battery. Due to their simplicity they are not able to
give any insight into the inner cell reactions. However, in practice
this does not matter: when operated within their specified limit-
sdin terms of state-of-charge, temperature and current rate-
sdperformance of intercalation-based lithium-ion batteries is
consistent and predictable [10e13]. This behaviour and the fact that
the nonlinear relationship between open-circuit voltage (OCV) and
SoC is monotonic means that it is relatively straightforward to
determine a Li-ion battery's SoC [14].

For Li-ion batteries, there are many viable techniques for esti-
mating SoC in situ. The simplest is to measure the open-circuit
voltage and relate it through a nonlinear function or lookup table
to the SoC. However, this method needs the battery to be in resting
condition which limits the applicability for electric vehicles while
driving. For improved robustness, OCV-based estimation is com-
binedwith other methods [15]. For a given value of SoC, ECNmodels
can be used to predict terminal voltage output from a known
dynamically-changing input current. This can be used to estimate
SoC with a good compromise between accuracy, robustness and
simplicity. A powerful approach is the use of ‘observers’ or ‘state
estimators’ which combine model-based estimation with actual
measurements using principles derived from control theory,
particularly the Kalman filter and its derivatives. Estimators of this
kind are popular (particularly within the automotive environment)
due to their ability to handle measurement noise and model inac-
curacies [7]. With these estimation methods, a high battery utiliza-
tion is possible,without compromising battery safety or lifetime [16].

To date, estimation techniques of this kind have not been
applied to Li-S batteries. There are big differences between Li-S and
the classic Li-ion chemistry. Li-ion has an intercalation based pro-
cess that has a single well-known dominant reaction pathway. Li-S
batteries however are more complex with multiple pathways [17],
which leads to some unusual and challenging behaviour for the SoC
estimation: (i) the OCV-SoC curve has two voltage ‘plateaus’ with
different properties; (ii) the OCV-SoC curve has a large flat region,
where the OCV does not change with SoC; (iii) the batteries exhibit
relatively high self discharge; and (iv) the usable capacity and po-
wer exhibit sensitivity to the applied current profile. Until recently,
there have been no models of a Li-S cell suitable for use in a battery
management algorithm. Recent developments have been made,
and there are now published ECN models of Li-S batteries during
discharge that are valid for a range of temperatures [18]. However,
the use of these models for the estimation of SoC, remains unex-
plored. As initial step towards a full BMS system for Li-S batteries,
this study examines SoC estimation techniques for their applica-
bility to Li-S batteries.

In this paper, Sec. 2 introduces Li-S batteries and their proper-
ties. Sec. 3 explores the applicability of state-estimation techniques
used for lithium-ion, noting the limitations with OCVmeasurement

and ‘Coulomb counting’ and concluding that a more sophisticated
approach is required. Sec. 4 describes the filtering techniques that
will be used for estimation: Sec. 4.1 describes an equivalent circuit
model that will be used to implement such filters, and Sec. 4.2e4.4
introduces three such filters: the extended (nonlinear) Kalman
filter (EKF), the ‘unscented’ Kalman filter (UKF) and the particle
filter (PF). Sec. 5 describes the experimental evaluation of these.
The results are presented in Sec. 6 where their performance and
applicability are discussed.

This work has been conducted as part of an automotive battery
project, and the batteries used in this study are kept at a well-
maintained constant temperature environment. Accordingly, the
work in this paper has been restricted to a constant temperature.
(In future work, this could be extended to a varying temperature
environment.)

The key contribution of this paper is the development and
analysis of these three recursive Bayesian SoC estimators for Li-S. To
the best of the authors' knowledge, no similar work has appeared
elsewhere in the literature.

2. Lithium-sulfur batteries

A Li-S battery consists of a lithium metal anode and a sulfur-
based cathode in electrolyte. Sulfur reversibly reacts with lithium
ions when reduced from elemental state S8, via the intermediates
Li2S8; Li2S4; Li2S2, to lithium sulfide Li2S, which is the key of the
high theoretical capacity of sulfur (1672 mAh g-1) [19]. The large
number of different species however, lead to complex inner re-
actions that are still a matter of ongoing research [17]. As shown in
Fig. 1, the discharge curve consists of two sections [20]: a high
plateau at about 2.35 V OCV, characterized by the presence of a
majority of high order polysulfides in solution (Li2S8, Li2S6), and a
low plateau at around 2.15 V OCV, where lower order chains have
been identified (Li2S4, Li2S3) [21].

In Li-S batteries the availability of these species in the electrolyte
determine the battery’s behaviour. In simple words, the cathode is
dissolving and participating in electrolyte [22], which causes two
voltage plateaus with different behaviour (usable capacity, internal
resistance, self-discharge, transient behaviour) [23,24]. As an initial
step to model these effects, an equivalent circuit model was pre-
sented recently, employing the Thevenin model structure with a
pulse discharge current profile and an off-line prediction error
minimisation method for parameter identification [18]. The model
does not explicitly consider self-discharge, but is valid for transient
behaviour of the kind seen in this study. In practice, lithium-sulfur
batteries do experience significant self-discharge during long

Fig. 1. Discharge/charge behaviour of a Li-S battery.
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