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h i g h l i g h t s

� A probabilistic framework is developed for the SOH prediction of Li-ion battery packs.
� Aging campaigns show that aging model alone is not sufficient for acceptable prognosis.
� Online pack level aging model parameter estimation framework is proposed.
� Proposed framework particularly considers battery packs in PHEV applications.
� Accuracy of the proposed framework is demonstrated using simulation study.
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a b s t r a c t

A probabilistic framework is developed for the prognosis of battery packs. It is demonstrated using aging
campaign data, that aging models alone may not be sufficient for aging prognosis, and aging model
parameter estimation may further improve the accuracy of prognosis. A systematic framework that
extends the aging models to battery pack aging and prognosis still remains challenging. We propose a
framework that bridges the gap in cell and pack aging prognosis in a probabilistic sense, and further
improves the prognosis by estimating the aging model parameters for the pack. The framework is ver-
satile for various applications because it is not restricted to a specific cell chemistry, or a type of aging
model. In addition, the proposed framework could distinguish more aged cells as compared to other cells
in the pack. Numerical examples are provided to demonstrate the effectiveness of the proposed
framework.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Aging of dynamical systems is defined as the loss of function-
ality over time. Understanding of aging phenomena is critical for
predicting the Remaining Useful Life (RUL) and for system design.
Prognosis allows prediction of RUL using current state of the sys-
tem, aging dynamics and future operating conditions. Prognosis for
interconnected systems poses challenges due to the aging propa-
gation among the components and other system interactions. Ag-
ing of one element may influence aging in the other elements,
leading to faster aging of the overall system. A battery pack consists
of battery cells, cooling system, and Battery Management System
(BMS). Life of the battery pack affects the life-time cost of the

vehicle, which includes servicing, maintenance and equipment
replacement costs. Understanding the aging phenomena of the
battery pack has been a research topic in the automotive industry
for a couple of decades [1e3]. Prognosis methods in general are not
new to the automotive industry. For example, life of engine oil is
dynamically computed using actual in-use vehicle conditions and
that information is used to predict the time until the next oil
change. Similarly, prognosis of battery packs in electrified vehicles
is important to avoid sudden power loss. Furthermore, prognostic
capabilities may enable life extending functions in the vehicle
control systems.

Various types of aging models have been developed and played
a pivotal role in prognosis [4e7]. However, these high fidelity aging
model are nonlinear and involve many model parameters required
to be identified. The aging phenomena is attributed to a compli-
cated electrochemical reaction mechanism. In order to develop an
aging model for a pack for on-board prognosis, a control oriented
model is necessary [8e11].
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Past research at the Center for Automotive Research (CAR), at
the Ohio State University (OSU) has established an aging model for
lithium-ion pouch cells containing blended spinel and layered-
oxide positive electrodes. These aging models were then
extended for packs by appropriate consideration of electrical and
thermal balancing as well as the differences among individual cells
[12]. A semi-empirical aging model is adopted in the work to reach
a balance betweenmodel complexity, computational efficiency and
physical understanding of the aging mechanism for a cell. Such a
model may be implemented for pack-level prognosis when the
aging model of every cell in the pack is known. However, the
manufacturing variability may cause heterogeneity between the
interconnected cells, making identification of the aging model for
all the cells challenging. One way of addressing this issue is to
consider aging model parameters as the state variables and
implement dynamic estimation methods such as Extended Kalman
Filter (EKF) or Nonlinear Predictive Filter (NPF) to estimate both
State Of Health (SOH) and the aging model. However, in most
experimentally validated aging models [13,14], the SOH appears as
a nonlinear static function of measured or estimated variables, such
as State Of Charge (SOC) or temperature. Those filtering techniques
may not be directly applicable for on-board prognosis due to
computational complexity. These approaches require a separate
filter for each cell or module in series. Another approach is to
identify the aging model on line using machine learning and data
driven algorithms, for example, Artificial Neural Networks (ANNs)
[15,16].

In this paper, we propose a model based estimation framework
that is specifically developed for the algebraic aging models in or-
der to improve both accuracy and computational complexity. The
proposed framework updates the agingmodel of the cells with only
the knowledge of SOH and SOC estimation of the entire pack. Cell-
to-cell heterogeneity due to manufacturing variability and expo-
sure to different temperatures in a pack can be probabilistically
quantified using measurements or estimations of physical param-
eters of cells. The aging model of the pack can then be derived by
combining cell aging models in probabilistic sense. The proposed
framework is suitable for on-board prognosis of a Plug-in Hybrid
Electric Vehicle (PHEV) battery pack. It is not restricted to any
specific cell chemistry or a type of aging model. In addition, the
proposed framework updates the parameters of the aging model of
the pack if physical parameter measurements and estimations of
SOC and SOH are available, which is generally true in practical us-
age of PHEV. It is worth mentioning that the probability of one cell
being most aged (or the probability of being the “weakest” cell) is
naturally included in the framework. This information is valuable to
improve the BMS control scheme, rebuilding the battery pack, and
replacing aged modules to prolong the life time of the pack. Hence,

we believe the paper makes important contributions that are not
available in the literature:

1. extension of the cell-level aging model to pack aging model in a
probabilistic sense

2. identification of a the semi-empirical aging model that can be
used with measurements available in a typical production PHEV

3. identification of the most aged cell in a battery pack

The rest of the paper is organized as follows. In section 2, we
review the aging model of a cell. A motivating example based on
experiment data is also provided to illustrate the necessity of aging
model parameter estimation. Section 3 establishes the probabilistic
framework to aging characteristics of the battery packs. Simulation
studies and experiments are demonstrated in Section 4 to show the
effectiveness of the proposed method.

2. Aging model dbackground

In this section, we will first review typical aging models for a
battery cell, and how degradation of single cell affects the aging of a
pack. A realistic method for identifying the aging model for battery
cell is also described. Using single cell aging campaign data, we
demonstrate that the aging model parameter estimation improves
the predictive capabilities of the aging model. This example pro-
vides motivation for pack level aging model parameter estimation
to improve prognosis of a pack.

2.1. Aging model of single cell

The aging of a battery cell is characterized by the capacity fade
and resistance growth. For the aging attributed to resistance
growth, we will only focus on the ohmic resistance instead of
detailed second order equivalent resistance model [5,13]. Let xc and
xr be the percentage capacity loss and resistance growth respec-
tively. The aging model of cell i can bewritten in the following form
in general�

xc;iðtÞ ¼ fcðzi;ai; tÞ
xr;iðtÞ ¼ frðzi;ai; tÞ ; zi ¼

�
SOCi; Ti;Vi; Ii

�
(1)

where Ti is the battery internal temperature, Vi is the terminal
voltage, Ii is the input current, and ai2ℝn is the vector collecting
the agingmodel parameters [17]. The zi, also called as stress factors,
are time dependent, and aging of the cell depends on the time
history of these inputs. However, it has been shown using
Palmgren-Miner rule that the aging is cumulative and does not
depend on the cycling sequence, provided certain conditions are

Nomenclature

½n� a sequence 1;2;…;n
a Collection of aging model parameters
X % capacity loss for a battery to reach the end of lifebX Estimated % capacity loss
1A Indicator function for set A
U Probability distribution function of w
Ah Accumulated Ampere-hour current throughput
D0 Initial distribution of a
Eac Activation energy
I Current
pi Probability of cell i being most aged

R ideal gas constant
Ratio Time fraction of charge depleting
S Capacity of a battery cell
SoC State of charge
T Temperature
V Terminal voltage
Voc Open circuit voltage
w Estimation error of pack capacity
Xc % capacity loss of a pack
xc % capacity loss of a cell
Xr % resistance loss of a pack
xr % resistance loss of a cell

C.-Y. Chang et al. / Journal of Power Sources 347 (2017) 57e6858



Download English Version:

https://daneshyari.com/en/article/5149548

Download Persian Version:

https://daneshyari.com/article/5149548

Daneshyari.com

https://daneshyari.com/en/article/5149548
https://daneshyari.com/article/5149548
https://daneshyari.com

