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h i g h l i g h t s

� Kinetic Monte Carlo simulations can capture the all stages of sintering.
� Input parameters calibration is vital for accurate Kinetic Monte Carlo simulations.
� A rigorous and efficient calibration is achieved via Artificial Neural Networks.
� The calibration method proposed is validated by experiment.
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a b s t r a c t

The Potts Kinetic Monte Carlo (KMC) model, proven to be a robust tool to study all stages of sintering
process, is an ideal tool to analyze the microstructure evolution of electrodes in solid oxide fuel cells
(SOFCs). Due to the nature of this model, the input parameters of KMC simulations such as simulation
temperatures and attempt frequencies are difficult to identify. We propose a rigorous and efficient
approach to facilitate the input parameter calibration process using artificial neural networks (ANNs).
The trained ANN reduces drastically the number of trial-and-error of KMC simulations. The KMC
simulation using the calibrated input parameters predicts the microstructures of a La0.6Sr0.4Co0.2Fe0.8O3

cathode material during sintering, showing both qualitative and quantitative congruence with real 3D
microstructures obtained by focused ion beam scanning electron microscopy (FIB-SEM) reconstruction.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Microstructural characteristics such as triple phase boundary
(TPB) density, specific surface areas and tortuosity factors of
different phases in the electrodes can strongly affect the perfor-
mance of solid oxide fuel cells (SOFCs). Sintering phenomenon
plays an important role in microstructural changes of the elec-
trodes during the firing process as well as under the operation
condition. For example, degradation of electrodes is partially
attributed to the coarsening of electrode materials at an elevated

operation temperature. In recent years, intensive efforts have been
dedicated to addressing this issue in both experiments and simu-
lations. X-ray computed tomography [1,2] and focused ion beam
scanning electron microscopy (FIB-SEM) 3D reconstruction [3,4]
were used to reveal the 3D microstructures in SOFC electrodes.

Recently, some numerical simulation techniques are emerging
as alternative tools that can provide complementary insights to this
study. Some established simulations can even study microstructure
changes in a long term scale [5], whereas experiments usually fall
short. Molecular Dynamic (MD) method which works at the atomic
scale can handle sintering of a few or tens of nanoparticles [6e9].
Discrete Element Method (DEM) as a particle-based method is very
suited for studying sintering of powders as it considers the
particular nature of materials [10]. It can be used for the study of* Corresponding author.
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the particle slides and rearrangements and the derivation of stress
and strain [11]. Martin et al. [12,13] and Kraft et al. [14] utilized DEM
simulations to study constrained sintering of layered systems. Liu
et al. [15] studied the microstructures of partially sintered NiO/YSZ
and LSM/YSZ electrodes using spherical particles. However, when a
particulate material is densified to a density above 0.85, the DEM
model loses its confidence. What is more, grain coarsening during
sintering is still a challenging aspect for DEM. Finite Element
Method (FEM) established on a continuum theory has been used to
study the stress and strain in layered systems during sintering by
taking into account implicitly the pore effect, but the microstruc-
tures are usually ignored [16,17].

The Potts Kinetic Monte Carlo (KMC) method is recently
emerging as a powerful tool at the mesoscale to mimic micro-
structure change caused by sintering [18e20]. It has been proven to
be a robust method to deal with the entire sintering process from
initial to final stages. Being coupled with FEM, it can consider the
effect of stress imposed by constraints on the sintering in the con-
strained sintering scenarios [21]. Especially, the KMC method can
handle arbitrarily shaped particleswhile it is so simple to code. Hara
et al. [22] predicted themicrostructures of sintered sub-micrometer
nickel powders byKMC simulationswhichwere verified by FIB-SEM
tomography characterizations. Zhang et al. [23e25] and Hara et al.
[26] modeled the sintering of dual-phase anodes using KMC simu-
lations to study their thermal stability during operation. While
having great potential to predict and to optimize microstructures of
SOFC electrodes, the KMC model, based on a phenomenological
description, is described using some parameters whose values are
difficult to identify. For instance, there are sintering temperatures
and frequencies for sintering mechanisms such as grain growth,
pore migration, vacancy formation and annihilation. To achieve
reliable and quantitative predictions using KMC simulations, the
determination of these input parameters is crucial.

Although some researchers tried to relate the frequency pa-
rameters to the atomic diffusivity [23], further parameter calibra-
tion is still needed. In fact, physical model parameter calibration is a
common concern for molders. A practical way is to calibrate the
material parameters in the model by comparing the numerical
simulations with the experimental observations. Usually, simula-
tions under various combinations of input parameters are carried
out for the comparison with experiments. This trial-and-error
approach is usually very lengthy and time-consuming, especially
when parameters interact with each other. In this context, the
artificial neural networks (ANNs) method is a rigorous and efficient
tool to calibrate the input parameters for KMC sintering simula-
tions. To the authors' knowledge, this study is the first to report on
the methodology of input parameter calibration for KMC simula-
tions using ANNs.

The artificial neural network, as a “biologically inspired”
computational model, is widely used in different fields for its
excellent capability of handling multivariate and non-linear sys-
tems. Good examples can be found for predicting SOFCs perfor-
mance [27e33] and microstructural properties of sintered
materials [34e37] based on ANNs trained with a finite amount of
experimental or simulation data. Particularly, ANNs have been used
as inverse techniques to identify or optimize input parameters for
different systems [38e41]. Chamekh et al. identified material's Hill
anisotropic parameters [42] using an inverse ANNmodel trained by
FEM simulation results of deep drawing tests. Benvenuti et al. [43]
used ANNs trained by DEM simulation data to identify granular
material properties in combination with granular mechanic tests.

2. Experimental

La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) pellet samples were sintered and

3Dmicrostructures were reconstructed using FIB-SEM tomography
to calibrate input parameters for KMC sintering simulation and to
validate the simulation.

2.1. Sample preparation

A commercial La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) powder (fuelcellma-
terials Inc., USA) with a nominal diameter size D50 ¼ 1.0 mm,
ranging from 200 nm to 10 mm, was used as the starting powder.
LSCF powder of 0.1 g was sampled and compressed for 30 s in a
closed die (Ф ¼ 5 mm) using a hand press (Newton press, Sansho
Industry Co., Ltd., Japan) at a loading of 2 kN. Green pellet samples
were formed with a green density (volume fraction of LSCF) of
0.602 ± 0.005. Pellet samples were heated up at 100 �C min�1 in an
image furnace (SVF-QP2-6, Motoyama Co., Ltd, Japan) and sintered
for 10min and 60min at 1000 �C. Several repeats for each condition
were conducted by examining the shrinkage to secure that the
sintering behavior of these samples was reproducible.

2.2. FIB-SEM reconstruction

A green sample (sample S0), a sample partially sintered at
1000 �C for 10 min (sample S1) and a sample sintered at 1000 �C for
60 min (sample S2) were impregnated with epoxy resin under
vacuum, which allows LSCF and pore phases to be easily distin-
guished from images. Cross-sections of pellet samples were pre-
pared by sand paper grinding followed by a fine polishing using an
argon-ion beam cross-section polisher (SM-09010, JEOL Ltd.,
Japan). Cross-sections were carbon coated before FIB-SEM
sectioning and imaging (Fig. 1(a)). A dual-beam FIB-SEM system
(JIB-4600F, Hitachi, Ltd., Japan) was used to acquire a cross-
sectional image sequence (Fig. 1(b) and (c)) under a voltage of
5 keV at a lateral resolution of 25 nm and a slicing pitch of 25 nm.

The acquired images in sequences were aligned, de-shadowed,
and filtered following the detailed image processing procedures
[44]. Fig. 1(d), (e) and (f) show the 3D microstructures of the three
samples reconstructed by FIB-SEM with 300 � 300 � 300 voxels.
Thanks to the impregnation, samples S0 and S1 have very good
LSCF/pore contrast, with the gray regions being the LSCF and the
dark regions being the resin-filled pores. However, due to the fact
that sample S2 (Fig. 1(f)) was sintered to a very dense state
(r ¼ 0.930) and that most pores were isolated and closed, the resin
failed to penetrate the pores. We have observed the “back-effect” of
the pores, so cautions need to be taken when binarizing the raw
images. Some manual checks and corrections were made to
encounter these artifacts. The threshold value was decided by
letting the relative density based on images to be equal to the real
density of sample S2 (r ¼ 0.930). We also verified the threshold
value of the image stacks for sample S0 (r ¼ 0.602) and sample S1
(r ¼ 0.806) against the real density.

2.3. Microstructural characteristics

Based on binary images, microstructural characteristics such as
specific surface area, sizes of LSCF and pore phases, and tortuosity
factors of LSCF and pores can be quantified. The volume-specific
surface area is also known as the surface-area-to-volume ratio,
defined as Sa:v ¼ Sa/V (mm2 mm�3), where Sa is the total surface area
of solid, and V is the total volume of both solid and pore phases. In
the present study, the surface area Sa was calculated using a
marching cube method [45]. This advanced algorithm allows the
surface curvatures to be considered even the microstructures are
based on voxels. Phase sizes of LSCF and pores weremeasured using
the linear intercept method and averaged over the entire image
stack. Tortuosity factors (t) of LSCF and pore phases were calculated
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