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h i g h l i g h t s

� Embedded battery sensors critical for accurate cell state, safer/fuller utilization.
� Value of internal cell signals obtained with fiber-optic (FO) sensors demonstrated.
� Intercalation strain and electrode temperature key cell parameters monitored.
� Advanced algorithms enable <2.5% accurate cell state estimation with FO signals.
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a b s t r a c t

A key challenge hindering the mass adoption of Lithium-ion and other next-gen chemistries in advanced
battery applications such as hybrid/electric vehicles (xEVs) has been management of their functional
performance for more effective battery utilization and control over their life. Contemporary battery
management systems (BMS) reliant on monitoring external parameters such as voltage and current to
ensure safe battery operation with the required performance usually result in overdesign and inefficient
use of capacity. More informative embedded sensors are desirable for internal cell state monitoring,
which could provide accurate state-of-charge (SOC) and state-of-health (SOH) estimates and early failure
indicators. Here we present a promising new embedded sensing option developed by our team for cell
monitoring, fiber-optic (FO) sensors. High-performance large-format pouch cells with embedded FO
sensors were fabricated. This second part of the paper focuses on the internal signals obtained from these
FO sensors. The details of the method to isolate intercalation strain and temperature signals are dis-
cussed. Data collected under various xEV operational conditions are presented. An algorithm employing
dynamic time warping and Kalman filtering was used to estimate state-of-charge with high accuracy
from these internal FO signals. Their utility for high-accuracy, predictive state-of-health estimation is also
explored.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

As explained in part 1 of this two-part paper, a better under-
standing and real-time monitoring of internal cell state with ac-
curate sensors is of critical need for effective control by battery

management systems (BMS). This can play a key role in accelerating
adoption of Lithium (Li)-ion batteries for clean energy technologies
[1e3]. BMS for Li-ion cells perform a variety of functions such as cell
balancing, state-of-charge (SOC), state-of-health (SOH) and state-
of-power (SOP) estimation, failure prevention, and battery pro-
tection. BMS today typically monitor parameters such as voltage,
current, and temperature externally to estimate cell state param-
eters. Common contemporary methods include Coulomb counting,
open circuit voltage (OCV)-based approaches, and dynamical
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model-based approaches.
In Coulomb counting, the current is integrated over time and

divided by the battery capacity to estimate SOC. This can be chal-
lenged in fielded packs as the low-cost current sensors typically
used there have measurement drift errors that accumulate over
time. The uncertainty in initial SOC and changing battery capacity
over time can further complicate this method. In Ref. [4], an
enhanced Coulomb counting method for SOC estimation was pre-
sented that uses derived empirical relationships between initial
SOC, voltage and current, and dynamically re-calibrating the bat-
tery capacity. Using this approach, the maximum SOC estimation
error was approximately 3%. It is not clear, however, whether that
level of accuracy holds for more aggressive xEV-relevant battery
loading profiles.

OCV can be computed by letting the battery rest for a sufficient
duration of time ([5e7]). SOC can then be estimated using the pre-
calibrated SOC-OCV relationship for that cell chemistry (or ob-
tained using a very slow constant current charge). However, this
method is of limited utility in real-world applications with real-
time estimation requirements.

The dynamical model-based approach can broadly be classified
into equivalent electrical circuit modeling and electrochemical
modeling. The equivalent electrical circuit modeling approach is by
far themost popular. There is a large body of research in this area. In
Ref. [8], the authors employ an impedance spectroscopy approach
to develop a non-linear electric-circuit model of an absorbent glass
mat lead-acid battery. In Ref. [9], the authors evaluate and compare
different electric circuit equivalent models of lithium-ion battery.
According to their studies, the dual-polarization model, i.e.
modeling independently the concentration and electrochemical
polarizations, is the most accurate in estimating SOC.

In Ref. [10], the authors use a reduced order model of a Li-ion
battery in conjunction with an Extended Kalman Filter (EKF) to
estimate the SOC. To account for model errors, the measurement
noise covariance in the EKF is modified based on the estimated SOC,
the current, and the dynamics of diffusion, charge transfer and
double layer. In Ref. [5], the authors address the problem that in
practice there is some variation in the OCV versus SOC relationship
from one Li-ion cell to the other. A new definition of capacity is
proposed to minimize the variation across different cells. This leads
to different capacities across different cells. A dual EKF is imple-
mented that simultaneously estimates both capacity and SOC. As in
Ref. [10], the measurement noise covariance is adaptively changed
to account for model errors.

Electrochemical models attempt to build the model from first
principles. Examples of these models include the pseudo two-
dimensional model, the single particle model and the porous
electrode model [11]. With such models, a trade-off exists between
model realism and solution time. In Ref. [12], the authors develop a
partial differential equation-based observer using the back-
stepping control approach.

In part 1 of this paper, we made the case for direct internal
monitoring with more informative embedded sensors to provide
accurate SOC estimates and early indications of incipient failure for
BMS. We presented fiber optic (FO) sensors as attractive candidates
for embedding as sensors in Li-ion and other advanced batteries.
The successful fabrication of high-performance large-format Li-ion
pouch cells with embedded FO sensors (referred to as “FO-cells” in
this paper) and assembly into commercial xEV modules by our
teamwere discussed in part 1 of this paper. This second part of the
paper focuses on the internal strain and temperature signals ob-
tained from these fiber-optic sensors under various xEV operational
conditions and their utility for high-accuracy SOC and SOH esti-
mation algorithms.

The contributions and organization of this part of the two-part

paper is as follows. In Section 2, we describe the various parame-
ters that can be sensed or derived using FO sensing. These pa-
rameters include temperature, strain and current. We describe a
novel computational approach for strain-temperature separation
and experimentally validate the approach. In Section 3, we explain
the relationship of strain with SOC in cell- and module-level tests
and present our SOC estimation algorithm. The SOC estimation is
based on a combination of FO based strain sensing and Coulomb
counting. In Section 4, we describe the impact of aging on the
strain-SOC relationship and our SOH estimation algorithm. In
particular, we use measured strain to estimate the capacity of the
battery and also predict the capacity up to 10 cycles into the future.
Finally, we conclude with a summary and some thoughts for future
research directions building on this work.

2. Sensing parameters of interest and strain-temperature
separation

The details of the large-format FO-cells fabricated by our team
were presented in part 1 of this paper. As mentioned and illustrated
there, the FO cable within the cell shown there includes two ele-
ments of a particular class of FO sensors, fiber Bragg grating (FBG)
sensors [13]. The FBG sensors are sensitive to strain and tempera-
ture, measured by monitoring their reflected wavelength shifts Dl.
The nominal cell capacity is approximately 15 Ah. The cell's anode
material is graphite and cathode material is a blend of nickel-
manganese oxide and manganese spinel.

It should be mentioned that while the FBG is monitoring the
electrode around a single point, intuitively strain at a point in the
electrode is not only affected by local SOC but also by expansion/
contraction from lithiation/delithiation at other points in the
electrode layer (since they are all mechanically part of the same
electrode structure). Therefore, the strain measured at one point is
expected to be indicative of SOC over a much larger area of the
electrode rather than just the local SOC at that point.

One of the two FBG sensors was enclosed in a special tubing to
allow it to slide freely and thereby make it selectively sensitive to
thermal strain alone. The measured wavelength shift of the
“reference” FBG sensor in the tubing is then subtracted from the
wavelength shift of the adjacent FBG sensor sensitive to total
electrode strain so that temperature variations are compensated.
The compensation method is described next.

The reference FBG in the tubing, referred to herein as “loose”
FBG, measures only the local temperature change DT [14]:

Dlloose ¼ KTDT (1)

The adjacent FBG (referred to herein as “fixed”) measures a
combination of strain ε and temperature change [14]:

Dlfixed ¼ Kεεþ KTDT ¼ εþ KTDT (2)

Equations (1) and (2) can be rewritten as follows:

Dlfixed ¼ εþ K*
TDlloose (3)

We can recover the modified strain, ε; if the constant K*
T can be

estimated. We refer to this constant as the “temperature compen-
sation factor”. This factor can be estimated in two ways.

2.1. Experimental approach to determining the temperature
compensation factor

In this approach, a cell at rest is first heated to a certain tem-
perature. The values of Dlfixed and Dlloose are recorded. Because the
cell is at rest, the value of ε is zero. Therefore, the steady state ratio
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