ELSEVIER

Contents lists available at ScienceDirect

Journal of Power Sources

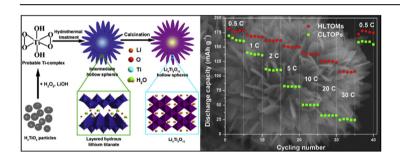
journal homepage: www.elsevier.com/locate/jpowsour

Scalable synthesis of hierarchical hollow Li₄Ti₅O₁₂ microspheres assembled by zigzag-like nanosheets for high rate lithium-ion batteries

Kunxu Zhu ^a, Hanyang Gao ^{a, b}, Guoxin Hu ^{a, *}, Mengjing Liu ^a, Haochen Wang ^a

- ^a School of Mechanical & Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
- ^b School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China

HIGHLIGHTS


- 3D hollow Li₄Ti₅O₁₂ microspheres assembled by zigzag-like nanosheets were prepared.
- Low-cost industrial H₂TiO₃ particles were chosen as titanium sources.
- Four parameters were found correlative and optimized to obtain pure Li₄Ti₅O₁₂.
- A high yield of $\text{Li}_4\text{Ti}_5\text{O}_{12}$ microspheres up to 120 g L^{-1} was achieved.
- The products exhibit outstanding rate performance and cycling stability.

ARTICLE INFO

Article history: Received 1 June 2016 Received in revised form 26 September 2016 Accepted 19 November 2016

Keywords: Lithium-ion battery Li₄Ti₅O₁₂ Hierarchical hollow microsphere Zigzag-like nanosheet

G R A P H I C A L A B S T R A C T

ABSTRACT

Electrochemical performance, abundance and cost are three crucial criteria to comprehensively evaluate the feasibility of ${\rm Li_4Ti_5O_{12}}$ as an electrode material for lithium-ion batteries (LIBs). Herein, hierarchical hollow ${\rm Li_4Ti_5O_{12}}$ microspheres (HLTOMs) assembled by zigzag-like nanosheets are synthesized by hydrothermal treatment of scalable lithium peroxotitanate complex solution using low-cost commercial ${\rm H_2TiO_3}$ particles as titanium sources, followed by a calcination treatment. Precursor solution concentration, ${\rm Li/Ti}$ ratio, hydrothermal temperature and duration are found correlative and should be optimized to obtain pure ${\rm Li_4Ti_5O_{12}}$ products. A high yield of HLTOMs up to ${\rm 120~g~L^{-1}}$ was achieved. Due to the unique morphology, the HLTOMs deliver an outstanding rate capability of 139, 125 and 108 mA h g⁻¹ at 10, 20 and 30 C, respectively, and exhibit 94% capacity retention after 1000 cycles at 30C indicating excellent stability. These values are much superior to those of commercial ${\rm Li_4Ti_5O_{12}}$ particles (CLTOPs), showing HLTOMs are promising anode materials for LIBs.

 $\ensuremath{\text{@}}$ 2016 Elsevier B.V. All rights reserved.

1. Introduction

Lithium ion batteries (LIBs) have been the power source for most portable electronic devices, and are now being the optimal energy

* Corresponding author. E-mail address: hugx@sjtu.edu.cn (G. Hu). storage candidate for modern electric vehicles (EVs) and stationary off-peak energy storage systems [1,2]. Selecting suitable electrode materials is the key to improve the performance of LIBs. Commercial graphite is currently used as anode materials in LIBs, however, i) serious safety issues arise from lithium dendrite formation when the Li-insertion potential of graphite approaches almost 0 V vs. Li/Li⁺, ii) poor rate performance is induced by their low Li⁺ diffusion coefficient and iii) poor cycle stability is caused by volume change

(ca. 9–13%) during lithium insertion/extraction processes [3–5]. Ergo, it is highly imperative to develop better anode materials with superior safety, high energy/power density, and long cycle life for next generation of LIBs.

Ti-based materials have proven to be potential alternative anode materials for LIBs [6-9]. Especially, spinel Li₄Ti₅O₁₂ (LTO), which is viewed as the most promising one due to its inherent advantages, has been extensively investigated [10,11]. LTO exhibits a stable voltage plateaus at about 1.5 V vs. Li/Li⁺, which is high enough to avoid electrolyte reduction on the surface of the electrode and prohibit lithium dendrite formation, thus making batteries safe. Also, as a zero strain lithium insertion host, LTO can accommodate up to three lithium ions per molecule with negligible volume change, resulting in good reversibility and cycling stability [12-14]. Therefore, it is not surprising that LTO was firstly employed to replace the traditional graphite as anode material for LIBs in EVs and advanced energy storage devices by companies such as Toshiba [15,16] and Altairnano [17].

However, pristine Li₄Ti₅O₁₂ is an electronic insulator due to the presence of only Ti^{4+} with a d^0 electronic configuration. Although works by Song et al. [18] and Kim et al. [19] demonstrated that pristine LTO could be cycled fairly well without any carbon additives because a few percent Li insertion into LTO could increase the electronic conductivity by a factor of ca. 10⁶ [20], a comparative study of carbon free and carbon containing Li₄Ti₅O₁₂ electrode by Pohjalainen et al. [21] showed that the feasibility of carbon free LTO electrodes highly depend on the properties of LTO (particle size and surface area). At the same time, several other strategies have been implemented to improve the rate performance of LTO electrode. One strategy is to increase its electrical conductivity by surface conductive coating or foreign atom doping [22–27]. Another good choice is to shorten the electrons/lithium ions transport length by tailoring its morphology and reducing the particle size to nanometer scale. Ganapathy et al. theoretically proved that size reducing and shape tailoring could significantly increase the storage capacity by density functional theory calculations [28]. Experimentally, wet synthesis methods are considered the optimum methods to prepare nanostructured LTO materials compared to solid state reaction, because the latter usually results in severe unwanted particle agglomerations at high temperature for a long period [29]. Chen et al. successfully prepared sawtooth-like LTO nanosheets by hydrothermal reaction, and the nanosheets exhibited an exceptional high rate performance up to 132 mA h g^{-1} even after 200 cycles at 57 C (1C = 175 mA g^{-1}) [30]. Cheng et al. synthesized hierarchical hollow LTO urchin-like microspheres through template-assisted hydrothermal reaction, and the materials showed a discharge capacity of 120 mA h $\rm g^{-1}$ at 20 C with just <2% decay after 100 cycles [31]. Other micro-nanostructured LTO materials, such as submicron donut-like structures [32], mesoporous submicrospheres [33], and mesoporous hollow spheres [34], have also been reported to exhibit outstanding rate performance.

A consensus that sustainability is the guiding principle for the next generation batteries including element abundance, cost, toxicity and scalability, has been reached [2]. However, since it is difficult for inorganic titanium salts such as $TiCl_4$ and $Ti(SO_4)_2$ to form a stable aqueous solution except in a strongly acidic environment [35], the titanium sources used in these alkaline solution methods are almost organometallic titanium compounds, i.e., titanium alkoxides like tetrabutyl titanate [22,25,31,34,36–40] and titanium isopropoxide [4,5,26,30,32,33]. The high cost of organic Ti sources used to supply Ti element which occupies 52.2% mass percentage of Tiation Tiation

We showed in a previous result that, inorganic peroxotitanate

complex solution was an appropriate precursor to synthesize Tibased nanostructured materials with tailed morphology and controlled crystal phase [41]. Inspired by that idea, herein, lithium peroxotitanate complex solution using low-cost industrial H₂TiO₃ particles as Ti source was exploited to synthesize LTO nanomaterials with designed structures in large scale. The peroxotitanate complex precursor solution was obtained by dissolving H₂TiO₃ particles in LiOH solution with the help of H₂O₂. As expected, hierarchical hollow Li₄Ti₅O₁₂ microspheres (HLTOMs) assembled by zigzag-like nanosheets were obtained by hydrothermal reaction and a following calcination treatment. Factors including precursor solution concentration, Li/Ti ratio, hydrothermal temperature and duration were found to determine the final morphology and crystal phase of the products. Benefiting from the unique structures, the as-prepared HLTOMs exhibited remarkable rate capability (139 mA h g^{-1} at 10 C and 108 mA h g^{-1} at 30 C) and excellent cycling stability (the capacity retention ratio after 1000 cycles at 30 C is 94%). Compared to commercial LTO particles (CLTOPs), the electrochemical performance of HLTOMs was significantly improved, especially at high rates.

2. Experimental

2.1. Materials synthesis

The Li-Ti-O materials were synthesized by a hydrothermal reaction of peroxotitanate complex precursor solution followed by a calcination treatment. The precursor solution was obtained via the same approach as that in our previous result [41]. Typically. 21.5 mmol of LiOH·H₂O was dissolved in 50 ml deionized water. 5 mmol of commercial H₂TiO₃ powder (ca. 1 μm in diameter) and 4 ml of H₂O₂ (30%) were then added into the solution. After magnetic stirring for 1.5 h at 30°C, a pale yellow precursor solution was obtained and transferred into a 75 ml Teflon-lined stainless steel autoclave, which was subsequently heated at 150°C for 6 h. Whitecolor products were filtered and washed by deionized water several times, and then dried at 80°C for 3 h. Finally, the dried powders were calcined at 550°C for 4 h to obtain the HLTOMs. Different precursor solution concentrations, Li/Ti ratios, hydrothermal temperatures and durations were also investigated using a similar procedure, as summarized in Table 1. The precursor solution was designated as S-X-Y, where S, X, and Y correspond to solution, concentration of Li and Ti in the solution, respectively. For example, S-0.43M-0.10M means a precursor solution with 0.43 M Li and 0.10 M Ti.

2.2. Materials characterization

The phase compositions of the samples were identified by X-ray diffraction (XRD, D8 Advance, Bruker) with Cu $K_a\,(\lambda=0.15418$ nm) radiation. The morphologies were characterized using field emission scanning electron microscope (FE-SEM, JEOL JSM-7800F Prime) and transmission electron microscope (TEM, JEOL JEM-2100, 200Kv). The nitrogen adsorption/desorption isotherms were obtained by a Micromeritics TriStar II 3020 apparatus. The thermogravimetric analysis was performed on a TA discovery TGA at a heating rate of 10°C/min in air. The tap density is tested by an intelligent density tester (PF-100B, Litian magnetoelectrican Science &Technology Co. Ltd).

2.3. Electrochemical measurement

The working electrodes were prepared by mixing the active materials, carbon black, and polyvinylidene difluoride (PVDF) at a weight ratio of 80: 10: 10 in *N*-methylpyrrolidone (NMP). The

Download English Version:

https://daneshyari.com/en/article/5149840

Download Persian Version:

https://daneshyari.com/article/5149840

Daneshyari.com