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HIGHLIGHTS

o A multi-time-scale estimation algorithm for singularly perturbed systems is proposed.
o Stability property of estimation errors is rigorously characterized.

o This proposed algorithm is pertinently applied to estimate battery states.

e Reduction techniques are systematically applied to develop appropriate battery model.
e Both the SOC and SOH are demonstrated to be effectively estimated.
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The accurate online state estimation for some types of nonlinear singularly perturbed systems is chal-
lenging due to extensive computational requirements, ill-conditioned gains and/or convergence issues.
This paper proposes a multi-time-scale estimation algorithm for a class of nonlinear systems with
coupled fast and slow dynamics. Based on a boundary-layer model and a reduced model, a multi-time-
scale estimator is proposed in which the design parameter sets can be tuned in different time-scales.
Stability property of the estimation errors is analytically characterized by adopting a deterministic
version of extended Kalman filter (EKF). This proposed algorithm is applied to estimator design for the
state-of-charge (SOC) and state-of-health (SOH) in a lithium-ion battery using the developed reduced
order battery models. Simulation results on a high fidelity lithium-ion battery model demonstrate that
the observer is effective in estimating SOC and SOH despite a range of common errors due to model order
reductions, linearisation, initialisation and noisy measurement.
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1. Introduction

There is an ever-growing trend towards electrifying the pow-
ertrain in automotive industry to address the increasingly stringent
standards on tailpipe emission and fuel economy. However electric
vehicles typically suffer from high relative costs, range anxiety and
long charging time [1], which are all related to the battery system.
Although lithium-ion batteries have been recognized as a suitable
cell chemistry technology for vehicle applications, the properties
such as energy/power density, ability to sustain fast “refueling”,
longevity, and safety are still clearly inferior to their counterpart,
the internal combustion engines [2]. Accordingly, advanced
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management enabling safe and optimal utilization of the battery
becomes sought.

For battery management, accurate knowledge of the state-of-
charge (SOC) and state-of-health (SOH) is crucial. SOC represents
the available capacity remaining in the battery and is often used in
the prediction of vehicle's driving range and terminal conditions for
battery operations. SOH quantifies the degree of battery degrada-
tion and is useful for prediction of life time. SOC and SOH are
separately functions of unmeasurable battery internal states,
particularly the ion concentrations and capacity fade [3]. This
motivates the development of state estimation algorithms for
battery systems that monitor the internal states in real-time.
However, this is a very challenging task for at least two reasons.
First, the underlying dynamics of a lithium-ion battery describing
distributed concentration diffusion and local current and potential
changes are governed by coupled nonlinear partial differential
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equations (PDE) [4,5]. This system model is very computationally
expensive so that its use for online estimator design can be
impractical. Second, battery dynamics including electrochemical,
thermal, electrical, and aging phenomena, exhibit multiple time-
scales [6]. Conventional observer design techniques for this
singularly perturbed system may lead to ill-conditioned observer
gains and potentially undermine the convergence properties [7].

To alleviate potential issues due to model complexity, various
estimation algorithms have been proposed based on reduced-order
models. Equivalent circuit models (ECMs) are extensively used for
battery state estimation because of their relatively simple mathe-
matical structure. For instance, by designing Kalman filter (KF) or
its variations, ECMs have been used for battery parameters and/or
SOC estimation, e.g. Refs. [8—10] Meanwhile, ECM-based sliding
mode observer (SMO) and particle filter (PF) were proposed for
estimation of battery states [11,12]. Recently, attempts at the esti-
mation of SOC and SOH have been made by using similar models,
where the SOH was represented by some parameters [13]. How-
ever, in ECMs, battery internal dynamics including concentration
diffusion and electrochemical kinetics are essentially ignored. This
leads to limited accuracy of these models particularly at an
extended operating range. Furthermore, without insights into the
system physical limitations [4,14], the resulting model-based al-
gorithms may be necessarily conservative.

In light of this, reductions for the physics-based battery model
are attracting considerable attention. A semi-rigorous approach for
systematic simplification of the full PDE models has been previ-
ously proposed in Ref. [5]. The simplified PDE models have been
shown a high-fidelity and can be used as a starting point for
control-oriented modelling. Using numerical order reduction ap-
proaches, partial simplifications have been widely conducted on
the temperature model and the electrochemical model, e.g. in
Refs. [15,16,17].

Based on the reduced electrochemistry-based models, a number
of papers emerged recently for SOC estimation. Specifically, the
single particle model (SPM), where each electrode is assumed to be
one lumped particle with only two states representing the system
dynamics, were used for state estimation and showed efficient
under some operating conditions [18,19]. However, few papers
have been observed in literature to estimate both SOC and SOH
using physics-based models. A simplified SPM that neglects the
cathode dynamics for SOC and SOH estimation was considered in
Ref. [20]. This is useful only for the specific batteries where the
dynamics in the cathode are much faster than that in the anode and
at low and moderate charging rates. Additionally, the aging dy-
namics have not been explicitly considered. Whilst previous at-
tempts at using physics-based models have been proposed, e.g.
Ref. [3], they do not directly address the multiple time scales in the
problem.

Multi-time-scale estimation theory was studied for a class of
linear systems in Ref. [21], and was later extended for some
nonlinear systems by Ref. [7]. In those papers, observer design was
realised through restriction of the process dynamics on the slow
manifold and thus taking analytical and computational advantages
that the lower-dimensional systems bring [22]. Whereas, for the
battery case, both the fast and slow states are required for SOC and
SOH estimation. Another difficulty is that the battery operates over
multiple charge and discharge cycles leading to oscillating states in
the electrochemical dynamics.

To address the existing issues in battery state estimation, this
article proposes a new algorithm for multi-time-scale observer
design. The singularly perturbed systems are decomposed into a
boundary-layer (fast) model and a reduced (slow) model using a
singular perturbation approach and the averaging theory. Based on
these simplified models, a nonlinear observer with fast and slow

gains is designed for state estimation of the fast and slow dynamics.
This theoretical result is applied to a battery system for estimation
of the SOC and SOH. Starting from an initial PDE-based high-fidelity
battery model, order reduction techniques are systematically used
by gradually introducing relevant assumptions. The obtained
models are justified to satisfy the requirements of the proposed
multi-time-scale estimation algorithm. The performance of the
designed estimator for SOC and SOH is demonstrated via
simulations.

The rest of this paper is organized as follows. In Section 2, the
theory development for multi-time-scale observer design is pre-
sented including clearly stated assumptions and rigorous analysis
for stability of the error dynamic systems. This theoretical result is
applied to a lithium-ion battery for the estimation of SOC and SOH
in Section 3. Simulation results to evaluate the proposed algorithm
are provided in Section 4, followed by conclusion of this work in
Section 5.

2. Multi-time-scale observer theory development

This section describes the development of multi-time-scale
estimation algorithm. We consider nonlinear singularly perturbed
systems with fast and slow states, X; Xy CR and Xs&X;CR™,
where Xy and X; are bounded sets. u is the system input and u€ U.
Particularly in this system, y; and y, represent the fast and slow
measurable system outputs; z; and z are the unmeasurable system
outputs separately in the fast and slow time-scales and belong to
the sets of R™ and R™. ¢ is a perturbation parameter and is small
and positive. The system governing equations can be formulated as

X; = Ff(xf,xs,u,e) (1a)
Xs = Fs (Xf,xs,u,e) (1b)
Vi = Hf(xf,xs,u,e) (10)
2 = Wy (% %.¢) (1d)
ys = HS(Xf,xs,e) (1e)
25 = Wi (%7 Xs, ¢) (19

Assumption 1. e<1

If Assumption 1 holds, from Ref. [26] the slow state can be
replaced with an equilibrium state X; and a boundary layer system
approximates the fast dynamics, i.e.:

X (t) = Fr (xf(t),is,u(t),o) (2a)
Vi (6) = Hy (¢(0). %5, u(0),0) (2b)
27(t) = W (X (6), %) (2¢)

In the following, an assumption on the stability property of the
system (2) is imposed. In the statement, a class-X function means
that a function, y(-), from R;o to Rsq is continuous, strictly
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