ELSEVIER

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Mediated proton transport through Nafion 117 membranes imbibed with varying concentrations of aqueous $VOSO_4$ (VO^{2+}) and NH_4VO_3 (VO_2^+) in 2 M H_2SO_4

Sophia Suarez a, b, *, Domenec Paterno a

- ^a Physics Department, Brooklyn College, The City University of New York, 2900 Bedford Ave, Brooklyn, NY 11210, USA
- ^b CUNY Graduate School, 365 Fifth Avenue, New York, NY 10016, USA

HIGHLIGHTS

- VO²⁺ imbibed membrane's proton transport mediated strongly by viscosity.
- VO₂ imbibed membrane's transport strongly affected by hydrogen bonding network.
- Faster transport expected of VO²⁺ imbibed membrane compared to VO₂⁺.

ARTICLE INFO

Article history:
Received 18 June 2016
Received in revised form
14 September 2016
Accepted 16 September 2016
Available online 23 September 2016

Keywords: NMR Nafion Vanadium Flow battery

ABSTRACT

We performed an extensive study on Nafion 117 membrane imbibed with various concentrations of aqueous ammonium metavanadate (NH₄VO₃), and vanadyl sulfate (VOSO₄), in 2 M H₂SO₄ over the temperature range of 20–100 °C, using ¹H NMR and AC Impedance spectroscopies. The objective was to determine the effect of the tetravalent (VO²⁺) and pentavalent (VO½) vanadium ions on the proton transport of Nafion 117. ¹H NMR chemical shift and linewidth data show greater short-range proton transport for the VO½ imbibed membranes compared with the VO²⁺. However, the local environments seem to differ in that while the data for VO½ imbibed membranes seem to follow more the trends observed for water hydrated Nafion 117, those for the VO²⁺ followed the trend of its aqueous bulk vanadium solvents, indicating that viscosity plays a larger role for the VO²⁺ imbibed membranes compared to the VO³.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The vanadium redox flow battery (VRB) is an excellent candidate for large-scale renewable electrical energy storage devices [1–5]. The VRB operates on redox couples of bivalent/trivalent (V^{2+}/V^{3+}) and tetravalent/pentavalent (VO^{2+}/VO_2^+) vanadium ions at the negative and positive electrodes respectively, with each cell consisting of an anode, a cathode and an ion exchange membrane (IEM). Energy is stored in the concentrated sulfuric acid solutions of vanadium electrolytes, which are separated by an IEM to allow translational diffusion of protons but prevent the mixing of the two electrolytes. Advantages such as long cycle life, flexibility in design,

E-mail address: snsuarez@brooklyn.cuny.edu (S. Suarez).

low cost, independent power and energy density outputs, room temperature operation and fast response time have resulted in the commercial use of VRBs for applications such as load leveling, UPS and hybrids of wind and solar energies devices.

In VRBs the high permeation of vanadium ions across cation exchange membranes (CEMs) leads to significant reduction in cell efficiency due to self-discharge and flooding from water molecules that solvate the vanadium ions [6–9]. In order to improve the VRB, reduction or elimination of vanadium ions permeation through the CEM is necessary. Because of this, we need a thorough understanding of the transport of the vanadium ions both in solutions and through CEMs, both of which are focus of our research group. We previously studied the fundamental transport of tetravalent and pentavalent vanadium ions of varying concentrations in a 2 M H₂SO₄ solution using variable temperature ¹H Nuclear Magnetic Resonance (NMR) and AC Impedance spectroscopy [10]. Results show transport processes being greatly dependent on solution

st Corresponding author. CUNY Graduate School, 365 Fifth Avenue, New York, NY 10016, USA. Tel.: $+1\,718\,951\,5000x1729$.

viscosity, especially for the tetravalent vanadium ion (VO²⁺). Additionally, ion association was observed and increased with increasing vanadium ion concentration, especially for VO²⁺.

As a continuation of this study we performed variable temperature ¹H NMR and AC Impedance Spectroscopy studies of Nafion 117 imbibed with varying concentrations of the tetravalent and pentavalent (VO^{2+} and VO^{+}_{2}) oxidation states. As a membrane, Nafion are the most ubiquitous [9.11–39]. This is due to their high proton conductivity; and good chemical, thermal and physical stabilities. They are however, very expensive and permeable to parasitic ions or molecules. Additionally, their proton transport properties are very dependent on their level of hydration [23–34]. Structurally, Nafion membrane consists of a hydrophobic fluorocarbon backbone and hydrophilic pendant side chains of sulfonic acid groups. This duality has been blamed for its high cross-over of non-proton ions. Upon hydration, the microphase separation between the hydrophobic and hydrophilic regions forms water channels thereby creating additional ion transport pathways, which are typically 4 nm in diameter [33]. Adding to this, the fixed negatively charged sulfonic acid groups could facilitate positively charged ion adsorption as well as their diffusion in the membrane through Coulomb attractions. Both result in poor overall performance.

To improve the efficiency and stability of the VRB, replacement membranes are necessary. These membranes must be chemically and thermally stable, have high proton conductivity and low to non-existent vanadium ions permeability. Since the vanadium ions are much smaller (<1 nm) in diameter [35], there permeation through Nafion is uncomplicated. Efforts toward replacing Nafion have led to its alterations and the use of replacements membranes. Alterations include the incorporation of inorganic oxides such as SiO₂, TiO₂ and zirconium phosphate particles [36–38] into the polymer matrix in an effort to reduce hydrated pore diameters. The addition of a cationic charged layer on the surface of Nafion [39] resulted in reduced vanadium ions permeation, and single cell self-discharge. However, the higher area resistance of the modified membrane reduced the voltage and offered no improvement in the overall cell efficiency. Replacements include hydrocarbon type membranes, which are developed from thermoplastics by sulfonation and have good chemical and thermal stability, good mechanical properties and low cost [40,41]. These include cation exchange membranes such as sulfonated poly (ether ether ketone) SPEEK [41,42], which has more rigid structure and smaller hydrated pore diameters; and sulfonated polybenzimidazole (PBI) [43], which also have smaller pores (0.5-2.0 nm) [44,45], a more rigid structure and reduced vanadium cross-over. However they both suffer from smaller ionic conductivity and greater membrane resistance resulting in lower voltage efficiency with increased current density compared to Nafion.

Despite the extensive research effort, studies have failed to isolate and identify the critical contributors to observed improved membrane performances. This is due mainly to the complexity of the ionic environments and interactions that exist in hydrated IEMs in operating VRBs. Present in the hydrated IEM in an operational VRB are all four vanadium oxidations states. Additionally, water molecules (solvating and bulk), possibly sulfate and bisulfate ions, and protons are also present. The high concentrations of both the acid and metal ions create regions in the IEM where all species interact with and are affected by each other. Because of these, it is necessary to characterize the interactions and permeability of all vanadium species in the electrolyte solutions as well as in the IEM.

The objective of the present work is to determine fundamentally the effect of the tetravalent and pentavalent vanadium ions on Nafion's proton transport capability. NMR offers a direct and nondestructive probe of the nuclei local environment, providing information on physical characteristics over a wide time $(1-10^{-10} \text{ s})$ scale, depending on the particular experiment being performed [46,47]. Parameters such as NMR spin-lattice (T_1) relaxation time measurements and spectra can provide information on ion and molecular mobility and interactions. This is the first in a series of fundamental studies aimed at understanding the proton transport of Nafion and similar IEMs for possible application in VRBs.

2. Experimental

2.1. Sample preparation

The compounds VOSO₄ (97%), and NH₄VO₃ (98%), and the acid H₂SO₄ (99.99%) were purchased from Sigma Aldrich. 250 ml of 2 M H₂SO₄ was first prepared by combining the required volume of the acid with distilled water according to the $M_1V_1 = M_2V_2$ relationship, where M_i is the solute concentration and V_i is the total solution volume. Solutions of VOSO4 and NH4VO3 were prepared by dissolving the required mass of the salt in 10 ml of 2 M H₂SO₄. The mass of VOSO₄ was calculated assuming it was anhydrous because the correct hydration number (up to 4) was unavailable. Nafion 117 membrane (purchased from Fuel Cell Inc.) was protonated by first boiling in distilled water for 1 h, then in H₂O₂ for 1 h, then in distilled water for another hour, followed by 3 h in 0.5 M H₂SO₄, and finally for 6 h in distilled water. All steps were performed at 80 °C. The imbibed membranes were prepared by immersing protonated Nafion 117 in the vanadium solutions for periods of four days. Concentrations were 0.05, 0.1, 0.2, 0.5, 1.0, and 2 M for VOSO₄; and 0.05, 0.1, 0.2 M for NH₄VO₃. Weight uptake measurements were performed on all samples.

For NMR measurements strips (3 mm \times 25 mm) of the imbibed membrane were first patted dry with Chemwipes to remove the surface liquid, then cut and placed into 5 mm OD NMR tubes, which were then capped and sealed with parafilm to reduce moisture loss over the course of the measurement. All variable temperature measurements were performed on the same day successively to prevent membrane dehydration as can occur especially at elevated temperatures.

2.2. NMR measurements

¹H NMR measurements were performed on a Varian Unity Plus spectrometer with a 7.1 T superconducting magnet and a Varian four-frequency 5 mm probe. NMR spectra were obtained from the Fourier Transform of single $\pi/2$ pulses. Spin-lattice relaxation times (T_1) were determined by the Inversion Recovery $(\pi - \tau - \pi/2 - \text{acquire})$ pulse sequence using 15 τ values. Water was used as the reference and set to 0 ppm. The temperature range studied was 20-100 °C with wait times of 15–20 min for equilibration [10]. The spectra were fitted using the MestRenova version 7.1 program. The files were opened as FIDs, phase corrected using the program's manual Phase correction, and normalized to maximum height of 100. The linewidths were determined using the cross hair tool by sandwiching the width at the height of 50. The program itself calculates the difference between these points hence giving us the full width at half max. Errors in linewidth, chemical shift and T₁ were less that 5%.

2.3. Ionic conductivity measurements

In-plane ionic conductivity values were determined by AC Impedance Spectroscopy over the frequency range of $2.0-2\times10^6$ Hz, using a Solartron SI 1260 Impedance Phase Gain Analyzer and 1287 Potentiostat. The temperature range studied was $21-60\,^{\circ}\text{C}$ due to the dehydration of the membrane at higher

Download English Version:

https://daneshyari.com/en/article/5150197

Download Persian Version:

https://daneshyari.com/article/5150197

<u>Daneshyari.com</u>